Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
23
24
25
26
27
28
1
2
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
23
26
27
28
29
30
31
1
2
3
4
5
Health IT Summit in San Francisco
2015-03-03 - 2015-03-04    
All Day
iHT2 [eye-h-tee-squared]: 1. an awe-inspiring summit featuring some of the world.s best and brightest. 2. great food for thought that will leave you begging for more. 3. [...]
How to Get Paid for the New Chronic Care Management Code
2015-03-10    
1:00 am - 10:00 am
Under a new chronic care management program authorized by CMS and taking effect in 2015, you can bill for care that you are probably already [...]
The 12th Annual World Health Care  Congress & Exhibition
2015-03-22 - 2015-03-25    
All Day
The 12th Annual World Health Care Congress convenes decision makers from all sectors of health care to catalyze change. In 2015, faculty focus on critical challenges and [...]
ICD-10 Success: How to Get There From Here
2015-03-24    
1:00 pm
Tuesday, March 24, 2015 1:00 PM Eastern / 10:00 AM Pacific Make sure your practice is ready for ICD-10 coding with this complimentary overview of [...]
Customer Analytics & Engagement in Health Insurance
2015-03-25 - 2015-03-26    
All Day
Takeaway business ROI: Drive business value with customer analytics: learn what every business person needs to know about analytics to improve your customer base Debate key customer [...]
How to survive a HIPPA Audit
2015-03-25    
2:00 pm - 3:30 pm
Wednesday, March 25th from 2:00 – 3:30 EST If you were audited for HIPAA compliance tomorrow, would you be prepared? The question is not so hypothetical, [...]
Events on 2015-03-03
Health IT Summit in San Francisco
3 Mar 15
San Francisco
Events on 2015-03-10
Events on 2015-03-22
Events on 2015-03-24
Events on 2015-03-25
Latest News

A novel and practical approach to applying predictive analytics in healthcare.

EMR Industry

Promoting a culture of transparency, accuracy, and respect for patient data could be essential to unlocking the full potential of AI in healthcare, according to a healthcare data analyst.

The majority of healthcare professionals across the Asia-Pacific region now acknowledge the importance of adopting AI technologies to enhance care delivery, boost clinical and operational efficiency, and improve equitable access and health outcomes—particularly in the face of increasing demand and workforce shortages.

According to the latest Philips 2025 Future Health Index report, most surveyed professionals in the region believe that digital tools, including AI and predictive analytics, can help lower hospital admission rates and enable earlier interventions that save lives. Many are also actively engaged in developing and implementing these technologies within their organisations.

However, concerns around trust and effective implementation continue to persist. The Philips survey revealed that many healthcare professionals feel current technologies are not tailored to their specific needs. Additionally, there are worries about potential data biases in AI systems that could exacerbate disparities in health outcomes.

In a follow-up article published in the *Journal of Intelligent Learning Systems and Applications* by Scientific Research Publishing, Rohan Desai examined these challenges in greater depth and outlined a roadmap for advancing research and practical implementation of predictive analytics in healthcare.

The proposed roadmap emphasizes the use of hybrid machine learning models, such as stacking, boosting techniques, and combinations like neural network–random forest hybrids. These approaches harness the strengths of different algorithms: stacking can reduce bias and variance by combining multiple models, boosting iteratively improves performance, and hybrid models are capable of capturing complex nonlinear patterns while preserving a level of interpretability.

A recent study from the United States also explored key barriers to implementing predictive analytics in healthcare. According to business intelligence analyst Rohan Desai, major challenges include data integration, data quality, model interpretability, and ensuring clinical relevance.