Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
19
21
22
24
26
27
28
29
30
11 Jun
2019-06-11 - 2019-06-13    
All Day
HIMSS and Health 2.0 European Conference Helsinki, Finland 11-13 June 2019 The HIMSS & Health 2.0 European Conference will be a unique three day event you [...]
7th Epidemiology and Public Health Conference
2019-06-17 - 2019-06-18    
All Day
Time : June 17-18, 2019 Dubai, UAE Theme: Global Health a major topic of concern in Epidemiology Research and Public Health study Epidemiology Meet 2019 in [...]
Inaugural Digital Health Pharma Congress
2019-06-17 - 2019-06-21    
All Day
Inaugural Digital Health Pharma Congress Join us for World Pharma Week 2019, where 15th Annual Biomarkers & Immuno-Oncology World Congress and 18th Annual World Preclinical Congress, two of Cambridge [...]
International Forum on Advancements in Healthcare - IFAH USA 2019
2019-06-18 - 2019-06-20    
All Day
International Forum on Advancements in Healthcare - IFAH (formerly Smart Health Conference) USA, will bring together 1000+ healthcare professionals from across the world on a [...]
Annual Congress on  Yoga and Meditation
2019-06-20 - 2019-06-21    
All Day
About Conference With the support of Organizing Committee Members, “Annual Congress on Yoga and Meditation” (Yoga Meditation 2019) is planned to be held in Dubai, [...]
Collaborative Care & Health IT Innovations Summit
2019-06-23 - 2019-06-25    
All Day
Technology Integrating Pre-Acute and LTPAC Services into the Healthcare and Payment EcosystemsHyatt Regency Inner Harbor 300 Light Street, Baltimore, Maryland, United States of America, 21202 [...]
2019 AHA LEADERSHIP SUMMIT
2019-06-25 - 2019-06-27    
All Day
Welcome Welcome to attendee registration for the 27th Annual AHA/AHA Center for Health Innovation Leadership Summit! The 2019 AHA Leadership Summit promotes a revolution in thinking [...]
Events on 2019-06-11
11 Jun
Events on 2019-06-17
Events on 2019-06-20
Events on 2019-06-23
Events on 2019-06-25
2019 AHA LEADERSHIP SUMMIT
25 Jun 19
San Diego
Latest News

A novel and practical approach to applying predictive analytics in healthcare.

EMR Industry

Promoting a culture of transparency, accuracy, and respect for patient data could be essential to unlocking the full potential of AI in healthcare, according to a healthcare data analyst.

The majority of healthcare professionals across the Asia-Pacific region now acknowledge the importance of adopting AI technologies to enhance care delivery, boost clinical and operational efficiency, and improve equitable access and health outcomes—particularly in the face of increasing demand and workforce shortages.

According to the latest Philips 2025 Future Health Index report, most surveyed professionals in the region believe that digital tools, including AI and predictive analytics, can help lower hospital admission rates and enable earlier interventions that save lives. Many are also actively engaged in developing and implementing these technologies within their organisations.

However, concerns around trust and effective implementation continue to persist. The Philips survey revealed that many healthcare professionals feel current technologies are not tailored to their specific needs. Additionally, there are worries about potential data biases in AI systems that could exacerbate disparities in health outcomes.

In a follow-up article published in the *Journal of Intelligent Learning Systems and Applications* by Scientific Research Publishing, Rohan Desai examined these challenges in greater depth and outlined a roadmap for advancing research and practical implementation of predictive analytics in healthcare.

The proposed roadmap emphasizes the use of hybrid machine learning models, such as stacking, boosting techniques, and combinations like neural network–random forest hybrids. These approaches harness the strengths of different algorithms: stacking can reduce bias and variance by combining multiple models, boosting iteratively improves performance, and hybrid models are capable of capturing complex nonlinear patterns while preserving a level of interpretability.

A recent study from the United States also explored key barriers to implementing predictive analytics in healthcare. According to business intelligence analyst Rohan Desai, major challenges include data integration, data quality, model interpretability, and ensuring clinical relevance.