Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
24
25
26
27
28
29
30
1
2
3
MedInformatix Summit 2014
2014-07-22 - 2014-07-25    
All Day
MedInformatix is excited to present this year’s meeting! 07/22 Tuesday Focus: Product Development Highlights:Latest Updates in Product Development, Interactive Roundtables, and More. 07/23 Wednesday Focus: Healthcare Trends [...]
MMGMA 2014 Summer Conference
2014-07-23 - 2014-07-25    
All Day
Mark your calendar for Wednesday - Friday, July 23-25, and join your colleagues and business partners in Duluth for our MMGMA Summer Conference: Delivering Superior [...]
This is it: The Last Chance for EHR Stimulus Funds! Webinar
2014-07-31    
10:00 am - 11:00 am
Contact: Robert Moberg ChiroTouch 9265 Sky Park Court Suite 200 San Diego, CA 92123 Phone: 619-528-0040 ChiroTouch to Host This is it: The Last Chance [...]
RCM Best Practices
2014-07-31    
2:00 pm - 3:00 pm
In today’s cost-conscious healthcare environment every dollar counts. Yet, inefficient billing processes are costing practices up to 15% of their revenue annually. The areas of [...]
Events on 2014-07-22
MedInformatix Summit 2014
22 Jul 14
New Orleans
Events on 2014-07-23
MMGMA 2014 Summer Conference
23 Jul 14
Duluth
Events on 2014-07-31
Latest News

A novel and practical approach to applying predictive analytics in healthcare.

EMR Industry

Promoting a culture of transparency, accuracy, and respect for patient data could be essential to unlocking the full potential of AI in healthcare, according to a healthcare data analyst.

The majority of healthcare professionals across the Asia-Pacific region now acknowledge the importance of adopting AI technologies to enhance care delivery, boost clinical and operational efficiency, and improve equitable access and health outcomes—particularly in the face of increasing demand and workforce shortages.

According to the latest Philips 2025 Future Health Index report, most surveyed professionals in the region believe that digital tools, including AI and predictive analytics, can help lower hospital admission rates and enable earlier interventions that save lives. Many are also actively engaged in developing and implementing these technologies within their organisations.

However, concerns around trust and effective implementation continue to persist. The Philips survey revealed that many healthcare professionals feel current technologies are not tailored to their specific needs. Additionally, there are worries about potential data biases in AI systems that could exacerbate disparities in health outcomes.

In a follow-up article published in the *Journal of Intelligent Learning Systems and Applications* by Scientific Research Publishing, Rohan Desai examined these challenges in greater depth and outlined a roadmap for advancing research and practical implementation of predictive analytics in healthcare.

The proposed roadmap emphasizes the use of hybrid machine learning models, such as stacking, boosting techniques, and combinations like neural network–random forest hybrids. These approaches harness the strengths of different algorithms: stacking can reduce bias and variance by combining multiple models, boosting iteratively improves performance, and hybrid models are capable of capturing complex nonlinear patterns while preserving a level of interpretability.

A recent study from the United States also explored key barriers to implementing predictive analytics in healthcare. According to business intelligence analyst Rohan Desai, major challenges include data integration, data quality, model interpretability, and ensuring clinical relevance.