Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
27
28
29
30
1
3
5
6
8
9
10
11
12
14
15
16
17
18
20
21
22
23
24
25
27
28
29
30
63rd ACOG ANNUAL MEETING - Annual Clinical and Scientific Meeting
2015-05-02 - 2015-05-06    
All Day
The 2015 Annual Meeting: Something for Every Ob-Gyn The New Year is a time for change! ACOG’s 2015 Annual Clinical and Scientific Meeting, May 2–6, [...]
Third Annual Medical Informatics World Conference 2015
2015-05-04 - 2015-05-05    
All Day
About the Conference Held each year in Boston, Medical Informatics World connects more than 400 healthcare, biomedical science, health informatics, and IT leaders to navigate [...]
Health IT Marketing &PR Conference
2015-05-07 - 2015-05-08    
All Day
The Health IT Marketing and PR Conference (HITMC) is organized by HealthcareScene.com and InfluentialNetworks.com. Healthcare Scene is a network of influential Healthcare IT blogs and health IT career [...]
Becker's Hospital Review 6th Annual Meeting
2015-05-07 - 2015-05-09    
All Day
This ​exclusive ​conference ​brings ​together ​hospital ​business ​and ​strategy ​leaders ​to ​discuss ​how ​to ​improve ​your ​hospital ​and ​its ​bottom ​line ​in ​these ​challenging ​but ​opportunity-filled ​times. The ​best ​minds ​in ​the ​hospital ​field ​will ​discuss ​opportunities ​for ​hospitals ​plus ​provide ​practical ​and ​immediately ​useful ​guidance ​on ​ACOs, ​physician-hospital ​integration, ​improving ​profitability ​and ​key ​specialties. Cancellation ​Policy: ​Written ​cancellation ​requests ​must ​be ​received ​within ​120 ​days ​of ​transaction ​or ​by ​March ​1, ​2015, ​whichever ​is ​first. ​ ​Refunds ​are ​subject ​to ​a ​$100 ​processing ​fee. ​Refunds ​will ​not ​be ​made ​after ​this ​date. Click Here to Register
Big Data & Analytics in Healthcare Summit
2015-05-13 - 2015-05-14    
All Day
Big Data & Analytics in Healthcare Summit "Improve Outcomes with Big Data" May 13–14 Philadelphia, 2015 Why Attend This Summit will bring together healthcare executives [...]
iHT2 Health IT Summit in Boston
2015-05-19 - 2015-05-20    
All Day
iHT2 [eye-h-tee-squared]: 1. an awe-inspiring summit featuring some of the world.s best and brightest. 2. great food for thought that will leave you begging for more. 3. [...]
2015 Convergence Summit
2015-05-26 - 2015-05-28    
All Day
The Convergence Summit is WLSA’s annual flagship event where healthcare, technology and wireless health communication leaders tackle key issues facing the connected health community. WLSA designs [...]
eHealth 2015: Making Connections
2015-05-31    
All Day
e-Health 2015: Making Connections Canada's ONLY National e-Health Conference and Tradeshow WE LOOK FORWARD TO SEEING YOU IN TORONTO! Hotel accommodation The e-Health 2015 Organizing [...]
Events on 2015-05-04
Events on 2015-05-07
Events on 2015-05-13
Events on 2015-05-19
Events on 2015-05-26
2015 Convergence Summit
26 May 15
San Diego
Events on 2015-05-31
Latest News

AI-augmented diabetic retinopathy screening programs cheaper than human grading

AI-augmented diabetic retinopathy screening programs cheaper than human grading

Implementation of either an automated or semi-automated deep learning system for diabetic retinopathy screening could lead to cost savings at the health-system level, according to an economic analysis modeling study recently published in The Lancet Digital Health.

Backed by Singapore’s Ministry of Health, the investigation looked at data from a national diabetic retinopathy screening program conducted within the country in 2015, and modeled the simulated costs of substituting the human-led approach with artificial intelligence-augmented screening techniques.

TOPLINE DATA

Based on the study’s models, diabetes patients would incur a 12-month total cost of $77 per patient when assessed by a human. Using a fully automated screening process would cut this price by 14.3%, to $66 per patient per year, while a semi-automated approach would increase savings by 19.5%, to $62 per patient per year.

Costs relating to the human graders, screening specificities and IT considerations had the greatest impact on these prices. For the former, the researchers highlighted the roughly two minutes a human grader would require to assess each image, which a deep learning system could cut down almost entirely.

Meanwhile, the major difference between the fully automated model and the semi-automated model, which only reduced human grading costs by 74%, was follow-up care driven by each screening method’s specificity.

“The fully automated model … yields greater savings,” the researchers wrote. “This is because of a higher rate of false positives, and therefore more unnecessary specialist visits, under the fully automated model. The higher costs of graders in the semi-automated model is more than offset by the lower consultation costs. However, this is … based on the wages in Singapore, and might not apply to other settings.”

HOW IT WAS DONE

The study relied on a historical dataset of 39,006 diabetes patients screened through a tele-ophthalmology platform as part of the Singapore Integrated Diabetic Retinopathy Programme.

The recorded cost of screening these patients against the hypothetical two deep learning system-based approaches using a decision tree model developed by the research team. Parameters included in this model included diabetic retinopathy prevalence rates, screening costs of each approach, their sensitivity and specificity, and resulting medical consultation costs.

Diagnostic performance and disease prevalence values were collected from local sources or based on the researchers’ prior work. The costs of goods and services were either obtained in 2015, or were adjusted for inflation to reflect their price in June 2015.

THE LARGER TREND

A number of academic teams and major tech providers have been developing algorithm-based approaches to diabetic retinopathy screening, some of which involve devices that are easily mounted onto a smartphone to encourage point-of-care diagnoses. Google in particular has been beating the drum of machine learning-based screening for the last few years, having published study data regarding their system in 2018 and announcing its first real-world clinical use in 2019.

IN CONCLUSION

“Our study shows that both the fully automated and semi-automated [deep learning systems] were less expensive than the current manual grading system for diabetic retinopathy screening in Singapore. By 2050, Singapore is projected to have close to 1 million people with diabetes; if a [deep learning system] is adopted, this could translate into savings of $15 million,” the researchers concluded.