Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
5
6
8
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
Forbes Healthcare Summit
2014-12-03    
All Day
Forbes Healthcare Summit: Smart Data Transforming Lives How big will the data get? This year we may collect more data about the human body than [...]
Customer Analytics & Engagement in Health Insurance
2014-12-04 - 2014-12-05    
All Day
Using Data Analytics, Product Experience & Innovation to Build a Profitable Customer-Centric Strategy Takeaway business ROI: Drive business value with customer analytics: learn what every business [...]
mHealth Summit
DECEMBER 7-11, 2014 The mHealth Summit, the largest event of its kind, convenes a diverse international delegation to explore the limits of mobile and connected [...]
The 26th Annual IHI National Forum
Overview ​2014 marks the 26th anniversary of an event that has shaped the course of health care quality in profound, enduring ways — the Annual [...]
Why A Risk Assessment is NOT Enough
2014-12-09    
2:00 pm - 3:30 pm
A common misconception is that  “A risk assessment makes me HIPAA compliant” Sadly this thought can cost your practice more than taking no action at [...]
iHT2 Health IT Summit
2014-12-10 - 2014-12-11    
All Day
Each year, the Institute hosts a series of events & programs which promote improvements in the quality, safety, and efficiency of health care through information technology [...]
Design a premium health insurance plan that engages customers, retains subscribers and understands behaviors
2014-12-16    
11:30 am - 12:30 pm
Wed, Dec 17, 2014 1:00 AM - 2:00 AM IST Join our webinar with John Mills - UPMC, Tim Gilchrist - Columbia University HITLAP, and [...]
Events on 2014-12-03
Forbes Healthcare Summit
3 Dec 14
New York City
Events on 2014-12-04
Events on 2014-12-07
mHealth Summit
7 Dec 14
Washington
Events on 2014-12-09
Events on 2014-12-10
iHT2 Health IT Summit
10 Dec 14
Houston
Articles Latest News

AI predicts CNS infection type and prognosis with 99% accuracy fast.

EMR Industry

Researchers at Yonsei University have developed a deep learning model that nearly perfectly identifies the cause and predicts the prognosis of central nervous system (CNS) infections using just a few images of immune cells taken from cerebrospinal fluid (CSF).

The AI was trained on 3D holotomography images, which capture structural and biochemical details of live cells without the need for stains or labels. It achieved 99% accuracy in classifying infection types—viral, bacterial, or tuberculosis—and 94% accuracy in prognosis prediction.

The team reports that these results can be obtained within an hour after collecting the CSF sample.

The study, published on March 26 in the journal Advanced Intelligent Systems, was highlighted by corresponding author Professor Park Yu-rang from Yonsei University College of Medicine’s Department of Biomedical Systems Informatics as the first to utilize 3D cerebrospinal fluid (CSF) immune cell morphology—rather than protein or genetic markers—for both diagnosing and predicting outcomes of central nervous system (CNS) infections.

Professor Park noted that this tool could “help shorten the time needed for diagnosis and treatment planning in patients with CNS inflammation.”

The prospective study involved 14 adults with confirmed CNS infections treated at Severance Hospital between January and October 2022. Researchers captured 1,427 immune cell images using holotomography, a label-free imaging technique that measures the refractive index (RI) of live cells to reveal their biophysical structure.

Patients were grouped by infection type and clinical outcome, assessed using the modified Rankin Scale (mRS) at discharge. Among the 14 participants, three had poor prognoses (mRS ≥4), and five were diagnosed with bacterial or tuberculosis infections.

The AI model, built on a modified DenseNet-169 architecture, was compared against the widely used ResNet-101. It achieved an area under the ROC curve (AUROC) of 0.89 in differentiating viral from non-viral infections, surpassing ResNet’s 0.82. For prognosis prediction, the model scored an AUROC of 0.79, which improved to 0.94 when analyzing five cells per patient.

Using five immune cell images per patient further enhanced performance, with the AUROC rising to 0.99 for infection type identification and 0.94 for predicting clinical outcomes, showing greater consistency and reduced variability across samples.

Cell morphology proved highly predictive: immune cells from viral infections featured larger nuclei and higher protein density, while cells from patients with poor outcomes exhibited greater dry mass but lower protein density—a pattern also observed in non-viral infections. These features were directly derived from holotomography-based RI measurements.

To interpret the model’s focus, the team applied gradient-weighted class activation mapping (Grad-CAM) to pinpoint cell regions influencing predictions. Variations in refractive index near the nucleus were critical: in viral infections, the relevant area was limited to the inner cell shell, whereas in poor-prognosis cases, nuclear components expanded laterally and outer region density decreased.

Unlike earlier AI models in infectious diseases that depend on clinical data or molecular tests—often requiring electronic health records or lab assays that delay results—this approach leverages cell shape and structure for rapid, label-free analysis with minimal laboratory infrastructure.