Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
29
30
31
1
2
5
7
8
12
13
14
16
17
21
22
23
24
25
26
27
28
1
Proper Management of Medicare/Medicaid Overpayments to Limit Risk of False Claims
2015-01-28    
1:00 pm - 3:00 pm
January 28, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9AM AKST | 8AM HAST Topics Covered: Identify [...]
EhealthInitiative Annual Conference 2015
2015-02-03 - 2015-02-05    
All Day
About the Annual Conference Interoperability: Building Consensus Through the 2020 Roadmap eHealth Initiative’s 2015 Annual Conference & Member Meetings, February 3-5 in Washington, DC will [...]
Real or Imaginary -- Manipulation of digital medical records
2015-02-04    
1:00 pm - 3:00 pm
February 04, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Orlando Regional Conference
2015-02-06    
All Day
February 06, 2015 Lake Buena Vista, FL Topics Covered: Hot Topics in Compliance Compliance and Quality of Care Readying the Compliance Department for ICD-10 Compliance [...]
Patient Engagement Summit
2015-02-09 - 2015-02-10    
12:00 am
THE “BLOCKBUSTER DRUG OF THE 21ST CENTURY” Patient engagement is one of the hottest topics in healthcare today.  Many industry stakeholders consider patient engagement, as [...]
iHT2 Health IT Summit in Miami
2015-02-10 - 2015-02-11    
All Day
February 10-11, 2015 iHT2 [eye-h-tee-squared]: 1. an awe-inspiring summit featuring some of the world.s best and brightest. 2. great food for thought that will leave you begging [...]
Starting Urgent Care Business with Confidence
2015-02-11    
1:00 pm - 3:00 pm
February 11, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Managed Care Compliance Conference
2015-02-15 - 2015-02-18    
All Day
February 15, 2015 - February 18, 2015 Las Vegas, NV Prospectus Learn essential information for those involved with the management of compliance at health plans. [...]
Healthcare Systems Process Improvement Conference 2015
2015-02-18 - 2015-02-20    
All Day
BE A PART OF THE 2015 CONFERENCE! The Healthcare Systems Process Improvement Conference 2015 is your source for the latest in operational and quality improvement tools, methods [...]
A Practical Guide to Using Encryption for Reducing HIPAA Data Breach Risk
2015-02-18    
1:00 pm - 3:00 pm
February 18, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Compliance Strategies to Protect your Revenue in a Changing Regulatory Environment
2015-02-19    
1:00 pm - 3:30 pm
February 19, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Dallas Regional Conference
2015-02-20    
All Day
February 20, 2015 Grapevine, TX Topics Covered: An Update on Government Enforcement Actions from the OIG OIG and US Attorney’s Office ICD 10 HIPAA – [...]
Events on 2015-02-03
EhealthInitiative Annual Conference 2015
3 Feb 15
2500 Calvert Street
Events on 2015-02-06
Orlando Regional Conference
6 Feb 15
Lake Buena Vista
Events on 2015-02-09
Events on 2015-02-10
Events on 2015-02-11
Events on 2015-02-15
Events on 2015-02-20
Dallas Regional Conference
20 Feb 15
Grapevine
Articles Latest News

AI predicts CNS infection type and prognosis with 99% accuracy fast.

EMR Industry

Researchers at Yonsei University have developed a deep learning model that nearly perfectly identifies the cause and predicts the prognosis of central nervous system (CNS) infections using just a few images of immune cells taken from cerebrospinal fluid (CSF).

The AI was trained on 3D holotomography images, which capture structural and biochemical details of live cells without the need for stains or labels. It achieved 99% accuracy in classifying infection types—viral, bacterial, or tuberculosis—and 94% accuracy in prognosis prediction.

The team reports that these results can be obtained within an hour after collecting the CSF sample.

The study, published on March 26 in the journal Advanced Intelligent Systems, was highlighted by corresponding author Professor Park Yu-rang from Yonsei University College of Medicine’s Department of Biomedical Systems Informatics as the first to utilize 3D cerebrospinal fluid (CSF) immune cell morphology—rather than protein or genetic markers—for both diagnosing and predicting outcomes of central nervous system (CNS) infections.

Professor Park noted that this tool could “help shorten the time needed for diagnosis and treatment planning in patients with CNS inflammation.”

The prospective study involved 14 adults with confirmed CNS infections treated at Severance Hospital between January and October 2022. Researchers captured 1,427 immune cell images using holotomography, a label-free imaging technique that measures the refractive index (RI) of live cells to reveal their biophysical structure.

Patients were grouped by infection type and clinical outcome, assessed using the modified Rankin Scale (mRS) at discharge. Among the 14 participants, three had poor prognoses (mRS ≥4), and five were diagnosed with bacterial or tuberculosis infections.

The AI model, built on a modified DenseNet-169 architecture, was compared against the widely used ResNet-101. It achieved an area under the ROC curve (AUROC) of 0.89 in differentiating viral from non-viral infections, surpassing ResNet’s 0.82. For prognosis prediction, the model scored an AUROC of 0.79, which improved to 0.94 when analyzing five cells per patient.

Using five immune cell images per patient further enhanced performance, with the AUROC rising to 0.99 for infection type identification and 0.94 for predicting clinical outcomes, showing greater consistency and reduced variability across samples.

Cell morphology proved highly predictive: immune cells from viral infections featured larger nuclei and higher protein density, while cells from patients with poor outcomes exhibited greater dry mass but lower protein density—a pattern also observed in non-viral infections. These features were directly derived from holotomography-based RI measurements.

To interpret the model’s focus, the team applied gradient-weighted class activation mapping (Grad-CAM) to pinpoint cell regions influencing predictions. Variations in refractive index near the nucleus were critical: in viral infections, the relevant area was limited to the inner cell shell, whereas in poor-prognosis cases, nuclear components expanded laterally and outer region density decreased.

Unlike earlier AI models in infectious diseases that depend on clinical data or molecular tests—often requiring electronic health records or lab assays that delay results—this approach leverages cell shape and structure for rapid, label-free analysis with minimal laboratory infrastructure.