Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
5
6
7
9
10
12
13
14
17
18
19
20
22
23
25
26
29
1
2
3
4
5
2014 OSEHRA Open Source Summit: Global Collaboration in Health IT
2014-09-03 - 2014-09-05    
8:00 am - 5:00 pm
OSEHRA is an alliance of corporations, agencies, and individuals dedicated to advancing the state of the art in open source electronic health record (EHR) systems [...]
Connected Health Summit
2014-09-04    
All Day
The inaugural Connected Health Summit: Engaging Consumers is the only event focused exclusively on the consumer-focused perspective of the fast-growing digital health/connected health market. The [...]
Health Impact MidWest
2014-09-08    
All Day
The HealthIMPACT Forum is where health system C-Suite Executives meet.  Designed by and for health system leaders like you, it provides an unmatched faculty of [...]
Simulation Summit 2014
2014-09-11    
All Day
Hilton Toronto Downtown | September 11 - 12, 2014 Meeting Location Hilton Toronto Downtown 145 Richmond Street West Toronto, Ontario, M5H 2L2, CANADA Tel: 416-869-3456 [...]
Webinar : EHR: Demand Results!
2014-09-11    
2:00 pm - 2:45 pm
09/11/14 | 2:00 - 2:45 PM ET If you are using an EHR, you deserve the best solution for your money. You need to demand [...]
Healthcare Electronic Point of Service: Automating Your Front Office
2014-09-11    
3:00 pm - 4:00 pm
09/11/14 | 3:00 - 4:00 PM ET Start capitalizing on customer convenience trends today! Today’s healthcare reimbursement models put a greater financial risk on healthcare [...]
e-Patient Connections 2014
2014-09-15    
All Day
e-Patient Connections 2014 Follow Us! @ePatCon2014 Join in the Conversation at #ePatCon The Internet, social media platforms and mobile health applications are enabling patients to take an [...]
Free Webinar - Don’t Be Denied: Avoiding Billing and Coding Errors
2014-09-16    
1:00 pm - 2:00 pm
Tuesday, September 16, 2014 1:00 PM Eastern / 10:00 AM Pacific   Stopping the denial on an individual claim is just the first step. Smart [...]
Health 2.0 Fall Conference 2014
2014-09-21    
12:00 am
We’re back in Santa Clara on September 21-24, 2014 and once again bringing together the best and brightest speakers, newest product demos, and top networking opportunities for [...]
Healthcare Analytics Summit 14
2014-09-24    
All Day
Transforming Healthcare Through Analytics Join top executives and professionals from around the U.S. for a memorable educational summit on the incredibly pressing topic of Healthcare [...]
AHIMA 2014 Convention
2014-09-27    
All Day
As the most extensive exposition in the industry, the AHIMA Convention and Exhibit attracts decision makers and influencers in HIM and HIT. Last year in [...]
2014 Annual Clinical Coding Meeting
2014-09-27    
12:00 am
Event Type: Meeting HIM Domain: Coding Classification and Reimbursement Continuing Education Units Available: 10 Location: San Diego, CA Venue: San Diego Convention Center Faculty: TBD [...]
AHIP National Conferences on Medicare & Medicaid
2014-09-28    
All Day
Balancing your organization’s short- and long-term needs as you navigate the changes in the Medicare and Medicaid programs can be challenging. AHIP’s National Conferences on Medicare [...]
A Behavioral Health Collision At The EHR Intersection
2014-09-30    
2:00 pm - 3:30 pm
Date/Time Date(s) - 09/30/2014 2:00 pm Hear Why Many Organizations Are Changing EHRs In Order To Remain Competitive In The New Value-Based Health Care Environment [...]
Meaningful Use and The Rise of the Portals
2014-10-02    
12:00 pm - 12:45 pm
Meaningful Use and The Rise of the Portals: Best Practices in Patient Engagement Thu, Oct 2, 2014 10:30 PM - 11:15 PM IST Join Meaningful [...]
Events on 2014-09-04
Connected Health Summit
4 Sep 14
San Diego
Events on 2014-09-08
Health Impact MidWest
8 Sep 14
Chicago
Events on 2014-09-15
e-Patient Connections 2014
15 Sep 14
New York
Events on 2014-09-21
Health 2.0 Fall Conference 2014
21 Sep 14
Santa Clara
Events on 2014-09-24
Healthcare Analytics Summit 14
24 Sep 14
Salt Lake City
Events on 2014-09-27
AHIMA 2014 Convention
27 Sep 14
San Diego
Events on 2014-09-28
Events on 2014-09-30
Events on 2014-10-02
Articles

Artificial Intelligence in Remote Patient Monitoring: Opportunities and Cautions

Remote patient monitoring (RPM) has incorporated artificial intelligence (AI) for many years, even before technologies like ChatGPT captured widespread attention. Early implementations weren’t advanced large language models but rule-based systems designed to alert clinicians when patient data indicated potential concerns.

Today, as modern AI reshapes healthcare, RPM is positioned at the forefront of an exciting evolution—offering remarkable potential while demanding careful oversight and responsibility.

The Evolution of RPM: From Intensive Oversight to Scalable Monitoring
To appreciate AI’s role in RPM today, it’s helpful to look at its development. Early RPM programs targeted high-acuity patients with a significant short-term risk of adverse—and costly—events. Examples include recently discharged heart failure patients who received near real-time monitoring from dedicated nurses. These high-touch programs relied heavily on human oversight to ensure safety and positive outcomes.

The COVID-19 public health emergency transformed the landscape, expanding RPM to monitor medium- to high-risk patients on a much larger scale. Programs shifted from tracking a few critically ill individuals to managing hundreds of patients simultaneously.

Today, RPM has shifted its focus toward chronic disease management, targeting medium-risk patients with the goal of preventing long-term complications rather than responding to immediate crises. Monitoring a hypertensive patient’s five-year stroke risk differs greatly from tracking a transplant recipient’s six-month survival. This broader scope and scale create an ideal setting for AI to add value—not by replacing human judgment, but by improving efficiency and detecting patterns that might be overlooked by clinicians and care teams, especially during increasingly busy workdays.
Current AI Applications in RPM: Three Key Focus Areas

AI is already driving tangible improvements in remote patient monitoring across several domains. Here are three areas where AI is helping transform RPM into a more efficient, scalable, and proactive model of care.

Clinical Documentation and Workflow Efficiency
Some of the most advanced AI applications in RPM target “low-risk, high-impact” enhancements to provider workflows. Tools such as automated encounter transcription, structured data extraction from multiple sources, and intelligent documentation assistance are saving clinicians and care teams substantial time while generally improving data accuracy.

These solutions are particularly effective at trend analysis and visualization, using pattern recognition to flag subtle changes in vital signs and biometrics that busy staff might otherwise overlook. The value of AI here isn’t that humans couldn’t detect these trends—it’s that AI consistently prioritizes and surfaces the most critical information, enabling care teams to monitor more patients effectively with the same resources.

AI is also improving compliance in RPM documentation, helping ensure that coding requirements are fully met while reducing manual oversight. These systems can automatically verify that clinicians are spending the right amount of time with each patient at the appropriate intervals, ensuring documentation and billing standards are satisfied before codes are submitted.

Care Management Support
AI is increasingly being applied to the care management component of RPM, helping identify missed opportunities in patient interactions—such as important topics not covered in recent visits that should be addressed in future encounters. By automating these checks, AI not only ensures accurate and defensible billing but also reduces administrative burden, minimizing the need for manual chart audits and follow-ups. This leads to more efficient workflows, keeping programs compliant and financially sustainable.

AI can also assist care managers by suggesting relevant social and community resources. For example, if a patient mentions difficulty accessing healthy food, the system may flag this information and prompt the care manager to recommend a local Meals on Wheels program or an upcoming nutrition class in the patient’s area.

Predictive Analytics and Risk Stratification
This is where AI in RPM becomes both powerful and sophisticated. Traditional systems, like electrocardiogram (ECG) analysis, often relied on hundreds of thousands of readings from a single data source. In contrast, AI-driven RPM can combine vital signs, clinical notes, patient-reported outcomes, and questionnaire responses to generate comprehensive risk assessments.

The true breakthrough comes from AI’s ability to detect subtle, previously unrecognized patterns. Individual patient responses that might not trigger alerts on their own can become clinically meaningful when analyzed collectively over time. This enables an early warning system for patient deterioration and risk, providing insights far beyond what human analysis could achieve at scale.

Need for Human Oversight
Responsible AI deployment is critical, particularly when predictive tools are used for high-acuity patients, where human clinical judgment remains essential. The concern isn’t solely AI accuracy—it’s also the risk of automation bias, where clinicians might over-rely on AI recommendations and reduce their own attentiveness.

For medium- and lower-risk patients, who cannot practically receive continuous human monitoring due to personnel and cost constraints, the question becomes less about AI versus humans and more about AI versus no monitoring. At a population level, having intelligent monitoring is far better than having none.

This highlights a core principle: AI in RPM should serve as decision support, not replace human decision-making. Clinicians must retain ultimate responsibility, verifying and validating AI-generated insights before applying them to patient care.

Challenges and Considerations
As AI becomes increasingly integrated into remote patient monitoring and wider healthcare workflows, it introduces both significant opportunities and added complexity. Organizations must carefully navigate several key challenges when evaluating and implementing AI within their RPM programs.

The “Black Box” Challenge
Even AI tools that perform well can remain opaque in how they reach their conclusions. In testing a summarization tool under development, what initially seemed like AI errors often turned out to be the system accurately detecting human mistakes. While this highlights AI’s potential, it also exposes a fundamental issue: even high-performing AI will occasionally err, and we may not know when or why.

This unpredictability reinforces the need for clinicians to remain vigilant. AI can appear convincingly correct while being wrong, so care teams must avoid over-reliance, regardless of the tool’s track record.

Vendor Selection and Due Diligence
The surge in AI adoption has drawn many companies with cutting-edge technology but limited healthcare experience. Similar to the early days of RPM—when wearable device firms entered the market without fully understanding clinical workflows—today’s AI landscape includes vendors that may lack the expertise required for safe, effective, and compliant care delivery.

Healthcare providers implementing RPM programs need to assess not only the technical capabilities of AI solutions but also the clinical experience and healthcare knowledge of potential vendor partners.

Looking Ahead: Balancing Innovation With Responsibility
Integrating AI into RPM presents a major opportunity to enhance care delivery, improve provider efficiency, reduce clinical risk, and expand monitoring to more patients who can benefit from these services. Achieving these gains, however, requires a careful approach that prioritizes patient safety, preserves human oversight, and addresses a range of ethical and operational concerns.

Success will hinge on providers’ ability to pair innovation with responsibility—using AI as a supportive tool to augment human clinical judgment rather than replace it. The future of AI in RPM is not about choosing between humans and machines; it is about combining both thoughtfully to build remote monitoring systems that are more effective, efficient, and accessible than either could accomplish alone.