Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
5
6
7
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
Federles Master Tutorial On Abdominal Imaging
2020-06-29 - 2020-07-01    
All Day
The course is designed to provide the tools for participants to enhance abdominal imaging interpretation skills utilizing the latest imaging technologies. Time: 1:00 pm - [...]
IASTEM - 864th International Conference On Medical, Biological And Pharmaceutical Sciences ICMBPS
2020-07-01 - 2020-07-02    
All Day
IASTEM - 864th International Conference on Medical, Biological and Pharmaceutical Sciences ICMBPS will be held on 3rd - 4th July, 2020 at Hamburg, Germany . [...]
International Conference On Medical & Health Science
2020-07-02 - 2020-07-03    
All Day
ICMHS is being organized by Researchfora. The aim of the conference is to provide the platform for Students, Doctors, Researchers and Academicians to share the [...]
Mental Health, Addiction, And Legal Aspects Of End-Of-Life Care CME Cruise
2020-07-03 - 2020-07-10    
All Day
Mental Health, Addiction Medicine, and Legal Aspects of End-of-Life Care CME Cruise Conference. 7-Night Cruise to Alaska from Seattle, Washington on Celebrity Cruises Celebrity Solstice. [...]
ISER- 843rd International Conference On Science, Health And Medicine ICSHM
2020-07-03 - 2020-07-04    
All Day
ISER- 843rd International Conference on Science, Health and Medicine (ICSHM) is a prestigious event organized with a motivation to provide an excellent international platform for the academicians, [...]
04 Jul
2020-07-04    
12:00 am
ICRAMMHS is to bring together innovative academics and industrial experts in the field of Medical, Medicine and Health Sciences to a common forum. All the [...]
6th Annual Formulation And Drug Delivery Congress
2020-07-08 - 2020-07-09    
All Day
Meet and learn from experts in the pharmaceutical sciences community to address critical strategic developments and technical innovation in formulation, drug delivery and manufacturing of [...]
7th Global Conference On Pharma Industry And Medical Devices
2020-07-08 - 2020-07-09    
All Day
The Global Conference on Pharma Industry and Medical Devices GCPIMD is to bring together innovative academics and industrial experts in the field of Pharmacy and [...]
IASTEM - 868th International Conference On Medical, Biological And Pharmaceutical Sciences ICMBPS
2020-07-09 - 2020-07-10    
All Day
IASTEM - 868th International Conference on Medical, Biological and Pharmaceutical Sciences ICMBPS will be held on 9th - 10th July, 2020 at Amsterdam, Netherlands . [...]
2nd Annual Congress On Antibiotics, Bacterial Infections & Antimicrobial Resistance
2020-07-09 - 2020-07-10    
All Day
EURO ANTIBIOTICS 2020 invites all the participants from all over the world to attend 2nd Annual Congress Antibiotics, Bacterial infections & Antimicrobial Resistance to be [...]
Events on 2020-06-29
Events on 2020-07-02
Latest News

Big Data Helps OmedaRx Improve Medication Adherence

icd 9 shortfalls

Like many pharmacy benefit management companies, OmedaRx has relied on population health analytics to help it ensure patients are taking the medications they need. But often, the information gleaned from the software is too general. Now, the company is implementing a new cloud-based system that uses big data, analytics and machine learning to create more precise, cost-effective care management plans aimed at producing better patient outcomes.

OmedaRx is the pharmacy benefit management company of Cambia Health Solutions, parent company of Regence Blue Cross Blue Shield, and manages the prescription plans to Regence health plan members in Oregon, Washington, Utah and Idaho.

A year ago, OmedaRx began piloting Max for Medication Adherence from analytics provider GNS Healthcare, another Cambia Health Solutions company. The system uses big data to identify individuals at risk of costly drug-related events because they aren’t adhering to the recommended timing and dosage of their medications.

The results to date have been impressive and this month OmedaRx is beginning a full-scale evaluation of the platform’s effectiveness, phasing in 500 patients every month for six months. The plan is to ultimately include OmedaRx’s entire Medicare population of about 120,000.

Also See:FDA Looks To Big Data To Protect Public Health

Poor medication adherence is relatively common, according to the U.S. Department of Health and Human Services’ Agency for Healthcare Research and Quality. Studies have shown that 20 to 30 percent of medication prescriptions are never filled and that, on average, 50 percent of medications for chronic disease are not taken as prescribed. Poor medication adherence drives $290 billion in avoidable health care costs, or about 13 percent of total U.S. healthcare expenditures, according to the New England Healthcare Institute, an independent, not-for-profit organization.

Medication management has evolved from intuition-based treatments to population health, which emerged in the mid-1990s with a top-down, rules-based approach that treats individuals as hypotheticals, says Colin Hill, chairman and CEO of GNS Healthcare.

But traditional methods to determine which patients to reach out to don’t target people who are at high risk of negative health consequences. For example, OmedaRx might now determine that 5,000 people need intervention. With big data and more advanced analytics, it’s possible to determine that only 700 are really at risk.

“If we can increase medical adherence in a high-risk patient, we expect that will reduce the negative outcomes and costs associated with that patient,” says OmedaRx VP Jim Carlson, who is a pharmacist by training. “When we are able to, by intervention, reduce the risk of negative health outcomes, this is the Holy Grail.”

The growth, and availability, of data is key to creating analytics applications that can refine and advance medication adherence programs. Another key is machine learning, which advances the type of questions that can be asked, and answered. Consider analysis that determines, in a specific population, that the cost to treat a patient’s diabetes has increased 50 percent over the last year. The next questions are why, and what are the correlations? After that, forecasting needs to be done to determine what happens if that trend continues.

With machine learning, an inference of cause and effect, known as causal inference, can be determined: What happens to the cost if a particular course of action is taken? What happens if another course is taken? This lets companies consider many different future paths and pick the best one. “Big Data is really the breakthrough,” says Hill. “We now have large enough and rich enough data to power up causal inference and decision optimization.”

OmedaRx began testing Max for Medication Adherence in a pilot with about 100 patients.

The program starts with OmedaRx sharing electronic feeds of its pharmacy claims data with GNS Healthcare, which combines it with electronic feeds of pharmacy and medical claims data from Cambia (and its insurance companies such as Regency BCBS) as well as consumer and demographics from third-party vendors including information clearinghouses. Much of the data OmedaRx sends to GNS Healthcare is structured, but GNS Healthcare also can work with unstructured data.

The data is fed into GNS Healthcare’s Max Solution Platform using a number of coding applications capable of handling the unique features of individual data sets. From there, the mixed data is used to develop computational models.

The data sets and analytics platform are housed in a GNS Healthcare data warehouse, MeasureBase. Analysts can query the data warehouse using GNS Healthcare’s  Measure Language, which uses its own straight-forward language  that the company says makes it easy to specify what they want to measure, on which people, over what time periods in simple terms – without writing SQL or database queries. The data warehouse is housed in a highly secure virtual private cloud operated by GNS Healthcare. The cloud employs a massively parallel cloud-based architecture made of multiple web-based servers, according to GNS Healthcare. All services have been approved under the Federal Risk and Authorization Management Program (FedRAMP) for Federal Information Security Management Act of 2002 (FISMA).

GNS Healthcare’s platform can synthesize trillions of data points coming from claims history, electronic medical records, socioeconomic and geographic data, consumer behavior data, genomics data, bioinformatics data and more, the company says.

The data is run through GNS Healthcare’s patented Reverse Engineering and Forward Simulation (REFS) machine learning and simulation engine within the Max Solution Platform, which analyzes and models the data sets as multidimensional observations about people over time. The engine learns by reverse-engineering collections of models and then simulates representations to generate predictions, including risks of negative outcomes such as adverse events. It also quantifies the effect of behavior changes, stratifies populations based on individuals’ likelihood to engage, measures the power of interventions to change behavior and matches individuals to the most cost-efficient and effective intervention.

GNS Healthcare routinely generates analytics reports and models for OmedaRx. The data can be presented in dashboards as well as in stratified lists of individuals and can include risks, efficacy that quantifies risk reduction resulting from behavior and clinical behavior changes.

Source