Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
29
30
1
2
3
4
5
7
8
10
11
12
13
14
15
16
17
18
20
22
23
24
25
26
27
28
29
30
31
1
C.D. Howe Institute Roundtable Luncheon
2014-04-28    
12:00 pm - 1:30 pm
Navigating the Healthcare System: The Patient’s Perspective Please join us for this Roundtable Luncheon at the C.D. Howe Institute with Richard Alvarez, Chief Executive Officer, [...]
DoD / VA EHR and HIT Summit
DSI announces the 6th iteration of our DoD/VA iEHR & HIE Summit, now titled “DoD/VA EHR & HIT Summit”. This slight change in title is to help [...]
Electronic Medical Records: A Conversation
2014-05-09    
1:00 pm - 3:30 pm
WID, the Holtz Center for Science & Technology Studies and the UW–Madison Office of University Relations are offering a free public dialogue exploring electronic medical records (EMRs), a rapidly disseminating technology [...]
The National Conference on Managing Electronic Records (MER) - 2014
2014-05-19    
All Day
" OUTSTANDING QUALITY – Every year, for over 10 years, 98% of the MER’s attendees said they would recommend the MER! RENOWNED SPEAKERS – delivering timely, accurate information as well as an abundance of practical ideas. 27 SESSIONS AND 11 TOPIC-FOCUSED THEMES – addressing your organization’s needs. FULL RANGE OF TOPICS – with sessions focusing on “getting started”, “how to”, and “cutting-edge”, to “thought leadership”. INCISIVE CASE STUDIES – from those responsible for significant implementations and integrations, learn how they overcame problems and achieved success. GREAT NETWORKING – by interacting with peer professionals, renowned authorities, and leading solution providers, you can fast-track solving your organization’s problems. 22 PREMIER EXHIBITORS – in productive 1:1 private meetings, learn how the MER 2014 exhibitors are able to address your organization’s problems. "
Chicago 2014 National Conference for Medical Office Professionals
2014-05-21    
12:00 am
3 Full Days of Training Focused on Optimizing Medical Office Staff Productivity, Profitability and Compliance at the Sheraton Chicago Hotel & Towers Featuring Keynote Presentation [...]
Events on 2014-04-28
Events on 2014-05-06
DoD / VA EHR and HIT Summit
6 May 14
Alexandria
Events on 2014-05-09
Articles

Clinical trials can be expedited in part by: With electronic medical records, jump straight to the data

It has been projected that the amount of published scientific publications doubles every 17.3 years. But before basic lab studies on cell cultures and animals become clinical trials involving humans, it takes an average of 17 years for health and medical research to lead to real changes that patients observe in the clinic.

Medical research processes as they normally operate are typically ill-prepared to deal with rapidly changing pandemics. This has been particularly clear in the case of the COVID-19 pandemic, partly due to the virus’s frequent mutations. It is frequently left to scientists and public health officials to constantly juggle the development and testing of novel medicines to keep up with evolving varieties.

Thankfully, by utilizing a shared source of existing data, electronic medical records, or EMRs, scientists may be able to circumvent the traditional research timetable and investigate therapies and interventions as they are utilized in the clinic almost in real time.

Our team consists of a cardiologist from the University of Pittsburgh Medical Center, a pharmacist, and an epidemiology. We became aware of the urgency of promptly researching and sharing precise information on the best treatment modalities during the COVID-19 epidemic, particularly for patients who were at a high risk of hospitalization and death. Using electronic medical records (EMR) data, our newly published study demonstrated that early therapy with one or more of five distinct monoclonal antibodies significantly decreased the chance of hospitalization or mortality when compared with delayed or no treatment.

Conducting research with EMR data

EMR systems are commonly used by U.S. health care institutions for billing and administrative functions such as patient care documentation. These systems generally hold comprehensive records that can include sociodemographic data, medical history, test results, surgery and other operations, prescriptions, and billing expenses, even though data gathering is not consistent.

Many sizable health care systems in the United States gather patient data utilizing several EMR systems, in contrast to single-payer health care systems that integrate data into a single EMR system, such those in the United Kingdom and Scandinavian nations.

Using such data for scientific inquiry is made more challenging by the existence of multiple EMR systems. In response, the 40 hospitals and outpatient clinics of the University of Pittsburgh Medical Center utilize seven distinct EMR systems. To address this, the medical center created and manages a clinical data warehouse that gathers and unifies data from these systems.

Simulating medical procedures

Researching using EMR data is not a novel idea. Recently, scientists have begun investigating how to simulate randomized controlled trials—which are seen to be the gold standard study design but are sometimes expensive and take years to finish—using these massive health data platforms.

Our team evaluated five distinct monoclonal antibodies for which the Food and Drug Administration has granted emergency use authorization to treat COVID-19 using this emulation approach and our institution’s EMR data infrastructure. Human-made proteins known as monoclonal antibodies are intended to stop a pathogen—in this case, the COVID-19 virus—from penetrating human cells, proliferating, and posing a major threat to health. Clinical trial data served as the foundation for the initial authorizations. However, when the virus changed, further assessments based on cell

Our goal was to verify that the results of research conducted on cells could be applied to real patients. In order to match the anonymous clinical data from 2,571 patients treated with these monoclonal antibodies within two days of contracting COVID-19 with the data from 5,135 COVID-19 patients who were eligible for treatment but either did not receive it or received it three days or more after infection, we evaluated the data.

Those who received monoclonal antibodies within two days of a positive COVID-19 test, on average, had a 39% lower chance of dying or being admitted to the hospital than those who did not receive the medication or who received it later. Furthermore, regardless of age, patients with weakened immune systems had a 55% lower chance of dying or being admitted to the hospital.

The results of the cell culture investigations were validated by our near-real-time monitoring of COVID-19 patients receiving monoclonal antibodies during the pandemic. According to our findings, researchers may be able to assess therapies quickly and without the need for clinical trials by utilizing data in this manner.

Appropriate usage of EMR data

Researchers can use the EMR systems found in many healthcare facilities to quickly address significant research topics as they come up. However, since this clinical data isn’t being gathered especially for studies, researchers must carefully plan their investigations and employ rigorous data validation and analysis. Additionally, they must exercise extreme caution when choosing suitable patient samples, harmonizing data from various EMR systems, and minimizing any potential sources of bias.

Significant public health issues and new pandemics are likely to appear suddenly and in unexpected ways. We think that judicious use of these data can assist address pressing health concerns in ways that are indicative of who is actually receiving care, given the wealth of information routinely gathered throughout U.S. health care systems.