Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
27
28
29
30
1
3
5
6
8
9
10
11
12
14
15
16
17
18
20
21
22
23
24
25
27
28
29
30
63rd ACOG ANNUAL MEETING - Annual Clinical and Scientific Meeting
2015-05-02 - 2015-05-06    
All Day
The 2015 Annual Meeting: Something for Every Ob-Gyn The New Year is a time for change! ACOG’s 2015 Annual Clinical and Scientific Meeting, May 2–6, [...]
Third Annual Medical Informatics World Conference 2015
2015-05-04 - 2015-05-05    
All Day
About the Conference Held each year in Boston, Medical Informatics World connects more than 400 healthcare, biomedical science, health informatics, and IT leaders to navigate [...]
Health IT Marketing &PR Conference
2015-05-07 - 2015-05-08    
All Day
The Health IT Marketing and PR Conference (HITMC) is organized by HealthcareScene.com and InfluentialNetworks.com. Healthcare Scene is a network of influential Healthcare IT blogs and health IT career [...]
Becker's Hospital Review 6th Annual Meeting
2015-05-07 - 2015-05-09    
All Day
This ​exclusive ​conference ​brings ​together ​hospital ​business ​and ​strategy ​leaders ​to ​discuss ​how ​to ​improve ​your ​hospital ​and ​its ​bottom ​line ​in ​these ​challenging ​but ​opportunity-filled ​times. The ​best ​minds ​in ​the ​hospital ​field ​will ​discuss ​opportunities ​for ​hospitals ​plus ​provide ​practical ​and ​immediately ​useful ​guidance ​on ​ACOs, ​physician-hospital ​integration, ​improving ​profitability ​and ​key ​specialties. Cancellation ​Policy: ​Written ​cancellation ​requests ​must ​be ​received ​within ​120 ​days ​of ​transaction ​or ​by ​March ​1, ​2015, ​whichever ​is ​first. ​ ​Refunds ​are ​subject ​to ​a ​$100 ​processing ​fee. ​Refunds ​will ​not ​be ​made ​after ​this ​date. Click Here to Register
Big Data & Analytics in Healthcare Summit
2015-05-13 - 2015-05-14    
All Day
Big Data & Analytics in Healthcare Summit "Improve Outcomes with Big Data" May 13–14 Philadelphia, 2015 Why Attend This Summit will bring together healthcare executives [...]
iHT2 Health IT Summit in Boston
2015-05-19 - 2015-05-20    
All Day
iHT2 [eye-h-tee-squared]: 1. an awe-inspiring summit featuring some of the world.s best and brightest. 2. great food for thought that will leave you begging for more. 3. [...]
2015 Convergence Summit
2015-05-26 - 2015-05-28    
All Day
The Convergence Summit is WLSA’s annual flagship event where healthcare, technology and wireless health communication leaders tackle key issues facing the connected health community. WLSA designs [...]
eHealth 2015: Making Connections
2015-05-31    
All Day
e-Health 2015: Making Connections Canada's ONLY National e-Health Conference and Tradeshow WE LOOK FORWARD TO SEEING YOU IN TORONTO! Hotel accommodation The e-Health 2015 Organizing [...]
Events on 2015-05-04
Events on 2015-05-07
Events on 2015-05-13
Events on 2015-05-19
Events on 2015-05-26
2015 Convergence Summit
26 May 15
San Diego
Events on 2015-05-31
Articles

Cluster analysis, EHRs visualize, detect rare genetic

The study utilized a dataset comprising deidentified structured medical records from approximately 1.28 million patients across three healthcare institutions under the Singapore Health Services (SingHealth) cluster. This dataset covered a 3-year period from January 1, 2018, to March 1, 2022, and included the National Heart Centre Singapore, KK Women’s and Children’s Hospital, and Singapore General Hospital. The research adhered to relevant guidelines and regulations, receiving approval from the SingHealth Data Governance committee, with the SingHealth Centralised Institutional Review Board waiving the need for informed consent.

Data extraction involved collecting information from diverse sources within the SingHealth Database, such as laboratory results, radiology reports, pathology records, diagnoses, and detailed patient information. To mitigate privacy risks, only structured data was extracted initially, excluding free-text fields. Sensitive data fields were pseudonymized based on the “SingHealth Policy for Data Anonymisation” through a trusted third party. The pseudonymized data were then transferred to the Office of Insights and Analytics High-Performance Computer Lab, ensuring strict security measures to restrict access to authorized personnel only.

Post-deidentification, the structured data underwent normalization and standardization using the Population Builder tool, a third-party platform. Value sets in Population Builder facilitated grouping codes related to the same disease/phenotype, streamlining the filtering process. Two rare diseases, Fabry Disease and Familial Hypercholesterolemia (FH), were selected for the pilot project due to well-defined diagnostic criteria and extractable data from health records.

The diagnostic criteria for Fabry Disease and FH were outlined, and value sets were created to identify patients with known diagnoses. Data wrangling involved specific metrics examination for each patient cohort, retrieving relevant data using SQL queries, and subsequent manipulation in RStudio for analysis.

Data analysis encompassed visualization and statistical testing. The tidyverse and lubridate R packages were employed for visualizing demographic data through pie charts, scatterplots, boxplots, bar graphs, and a Venn diagram. Statistical testing involved a two-sample t-test to assess the difference in mean LDL-C levels between FH True Positives (TP) and suspects.

In summary, the study employed rigorous methods for data extraction, deidentification, and analysis, aiming to identify undiagnosed patients with rare genetic diseases through cluster analysis and visualization of electronic health records data.