Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
5
6
8
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
Forbes Healthcare Summit
2014-12-03    
All Day
Forbes Healthcare Summit: Smart Data Transforming Lives How big will the data get? This year we may collect more data about the human body than [...]
Customer Analytics & Engagement in Health Insurance
2014-12-04 - 2014-12-05    
All Day
Using Data Analytics, Product Experience & Innovation to Build a Profitable Customer-Centric Strategy Takeaway business ROI: Drive business value with customer analytics: learn what every business [...]
mHealth Summit
DECEMBER 7-11, 2014 The mHealth Summit, the largest event of its kind, convenes a diverse international delegation to explore the limits of mobile and connected [...]
The 26th Annual IHI National Forum
Overview ​2014 marks the 26th anniversary of an event that has shaped the course of health care quality in profound, enduring ways — the Annual [...]
Why A Risk Assessment is NOT Enough
2014-12-09    
2:00 pm - 3:30 pm
A common misconception is that  “A risk assessment makes me HIPAA compliant” Sadly this thought can cost your practice more than taking no action at [...]
iHT2 Health IT Summit
2014-12-10 - 2014-12-11    
All Day
Each year, the Institute hosts a series of events & programs which promote improvements in the quality, safety, and efficiency of health care through information technology [...]
Design a premium health insurance plan that engages customers, retains subscribers and understands behaviors
2014-12-16    
11:30 am - 12:30 pm
Wed, Dec 17, 2014 1:00 AM - 2:00 AM IST Join our webinar with John Mills - UPMC, Tim Gilchrist - Columbia University HITLAP, and [...]
Events on 2014-12-03
Forbes Healthcare Summit
3 Dec 14
New York City
Events on 2014-12-04
Events on 2014-12-07
mHealth Summit
7 Dec 14
Washington
Events on 2014-12-09
Events on 2014-12-10
iHT2 Health IT Summit
10 Dec 14
Houston
Articles

Columbia researchers develop kidney disease-spotting algorithm

chronic kidney disease

Columbia researchers develop kidney disease-spotting algorithm

As many as nine in 10 adults do not know they have chronic kidney disease, which can put them at risk for developing complications.

Researchers at Columbia University Vagelos College of Physicians and Surgeons have developed an algorithm that automatically scours electronic health records to alert physicians to early-stage chronic kidney disease.

The algorithm searches EHRs for results of blood and urine tests before performing calculations to indicate kidney function and damage and alerting clinicians.

“Identifying kidney disease early is of paramount importance, because we have treatments that can slow disease progression before the damage becomes irreversible,” said study leader Dr. Krzysztof Kiryluk, associate professor of medicine, in a statement to press.

More than one in seven adults is estimated to have chronic kidney disease, according to the U.S. Centers for Disease Control and Prevention, but as many as 90% don’t know they have it.

This can be a problem, as Kiryluk said, because early detection and treatment of CKD can prevent symptoms from worsening.

CKD is also more prevalent in Black and Latinx Americans than white Americans, making early detection an equity issue as well.

The reasons for under-diagnosis, notes the Columbia press release, are complex. Clinicians may not prioritize the necessary tests for diagnosis when it comes to asymptomatic patients, for example.

In addition, the interpretation for those necessary tests – one that measures a kidney-filtered metabolite in blood and another that measures leakage of protein in urine – can be challenging.

“Many patient characteristics, including age, sex, body mass or nutritional status, need to be considered, and this is frequently underappreciated by primary care physicians,” said Kiryluk.

Hence the Columbia algorithm, which was published in npj Digital Medicine earlier this month.

Researchers manually validated the algorithm with 451 chart reviews across three medical systems, and found that it diagnosed nephrologist-identified kidney disease correctly in 95% of patients, and ruled out kidney disease accurately in 97% of healthy patients.

“To assure transferability across different EHR systems, our algorithm was developed using training and validation datasets across several institutions,” according to the study.

The researchers proposed that the algorithmic diagnosis could enhance clinical care by enhancing patient and physician awareness of the disease and by enabling stage-specific recommendations for complication management.

“Although conceptually simple, our algorithm overcomes several important practical challenges stemming from real-life limitations of EHR data,” they wrote.

Despite kidney disease’s prevalence, technology to treat it has not meaningfully improved over the last few decades.

Public and private stakeholders are seeking to change that. The U.S. Department of Health and Human Services and the American Society of Nephrology have launched several prizes aimed at spurring kidney care innovation.

“Chronic kidney disease can cause multiple serious problems, including heart disease, anemia or bone disease, and can lead to an early death, but its early stages are frequently under-recognized and undertreated,” said Kiryluk.