Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
27
28
29
30
31
1
2
12:00 AM - NextGen UGM 2025
3
4
6
7
8
9
10
11
12
13
14
15
16
17
10:00 AM - MEDICA 2025
18
19
20
21
22
23
24
25
26
27
28
29
30
NextGen UGM 2025
2025-11-02 - 2025-11-05    
12:00 am
NextGen UGM 2025 is set to take place in Nashville, TN, from November 2 to 5 at the Gaylord Opryland Resort & Convention Center. This [...]
Preparing Healthcare Systems for Cyber Threats
2025-11-05    
2:00 pm
Healthcare is facing an unprecedented level of cyber risk. With cyberattacks on the rise, health systems must prepare for the reality of potential breaches. In [...]
MEDICA 2025
2025-11-17 - 2025-11-20    
10:00 am - 5:00 pm
Expert Exchange in Medicine at MEDICA – Shaping the Future of Healthcare MEDICA unites the key players driving innovation in medicine. Whether you're involved in [...]
Events on 2025-11-02
NextGen UGM 2025
2 Nov 25
TN
Events on 2025-11-05
Events on 2025-11-17
MEDICA 2025
17 Nov 25
40474 Düsseldorf
Articles

Dec 10: Study Identifies & Tracks Multiple Sclerosis With EHR Data, Algorithms

regenstrief institute and indiana university

Using natural language processing technology in electronic health record systems has helped identify patients with multiple sclerosis and collect information on disease traits, according to a study by researchers at Vanderbilt University Medical Center, Health Data Management reports.

Details of the Study

The study — published in the Journal of the American Medical Informatics Association — identified 5,789 patients with MS by using information from their EHRs to create an algorithm. The algorithm included data from:

  • ICD-9 codes;
  • Medications; and
  • Text keywords.

Researchers also collected data on the clinical course of disease progression.

According to the study’s authors, “This is one of the first studies to focus on specific traits of a disease by text mining of the [EHR].”

The study found that for all clinical traits examined:

  • Precision was 87%; and
  • Specificity was greater than 80% (Goedert, Health Data Management, 12/7).

Reaction

The researchers wrote , “This dataset provides a rich resource for better understanding MS and also shows that extraction of detailed disease states and markers of prognosis in patients with chronic disease is possible and may yield a powerful tool in chronic disease research.”

They added, “This information is extractable from clinic notes by simple algorithms, with high specificity, precision, and recall”

source