Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
1
2
4
5
6
7
8
10
11
12
12:00 AM - PFF Summit 2015
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
NextEdge Health Experience Summit
2015-11-03 - 2015-11-04    
All Day
With a remarkable array of speakers and panelists, the Next Edge: Health Experience Summit is shaping-up to be an event that attracts healthcare professionals who [...]
mHealthSummit 2015
2015-11-08 - 2015-11-11    
All Day
Anytime, Anywhere: Engaging Patients and ProvidersThe 7th annual mHealth Summit, which is now part of the HIMSS Connected Health Conference, puts new emphasis on innovation [...]
24th Annual Healthcare Conference
2015-11-09 - 2015-11-11    
All Day
The Credit Suisse Healthcare team is delighted to invite you to the 2015 Healthcare Conference that takes place November 9th-11th in Arizona. We have over [...]
PFF Summit 2015
2015-11-12 - 2015-11-14    
All Day
PFF Summit 2015 will be held at the JW Marriott in Washington, DC. Presented by Pulmonary Fibrosis Foundation Visit the www.pffsummit.org website often for all [...]
2nd International Conference on Gynecology & Obstetrics
2015-11-16 - 2015-11-18    
All Day
Welcome Message OMICS Group is esteemed to invite you to join the 2nd International conference on Gynecology and Obstetrics which will be held from November [...]
Events on 2015-11-03
NextEdge Health Experience Summit
3 Nov 15
Philadelphia
Events on 2015-11-08
mHealthSummit 2015
8 Nov 15
National Harbor
Events on 2015-11-09
Events on 2015-11-12
PFF Summit 2015
12 Nov 15
Washington, DC
Events on 2015-11-16
Articles

Dec 10: Study Identifies & Tracks Multiple Sclerosis With EHR Data, Algorithms

regenstrief institute and indiana university

Using natural language processing technology in electronic health record systems has helped identify patients with multiple sclerosis and collect information on disease traits, according to a study by researchers at Vanderbilt University Medical Center, Health Data Management reports.

Details of the Study

The study — published in the Journal of the American Medical Informatics Association — identified 5,789 patients with MS by using information from their EHRs to create an algorithm. The algorithm included data from:

  • ICD-9 codes;
  • Medications; and
  • Text keywords.

Researchers also collected data on the clinical course of disease progression.

According to the study’s authors, “This is one of the first studies to focus on specific traits of a disease by text mining of the [EHR].”

The study found that for all clinical traits examined:

  • Precision was 87%; and
  • Specificity was greater than 80% (Goedert, Health Data Management, 12/7).

Reaction

The researchers wrote , “This dataset provides a rich resource for better understanding MS and also shows that extraction of detailed disease states and markers of prognosis in patients with chronic disease is possible and may yield a powerful tool in chronic disease research.”

They added, “This information is extractable from clinic notes by simple algorithms, with high specificity, precision, and recall”

source