Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
24
25
26
27
28
29
30
1
2
3
MedInformatix Summit 2014
2014-07-22 - 2014-07-25    
All Day
MedInformatix is excited to present this year’s meeting! 07/22 Tuesday Focus: Product Development Highlights:Latest Updates in Product Development, Interactive Roundtables, and More. 07/23 Wednesday Focus: Healthcare Trends [...]
MMGMA 2014 Summer Conference
2014-07-23 - 2014-07-25    
All Day
Mark your calendar for Wednesday - Friday, July 23-25, and join your colleagues and business partners in Duluth for our MMGMA Summer Conference: Delivering Superior [...]
This is it: The Last Chance for EHR Stimulus Funds! Webinar
2014-07-31    
10:00 am - 11:00 am
Contact: Robert Moberg ChiroTouch 9265 Sky Park Court Suite 200 San Diego, CA 92123 Phone: 619-528-0040 ChiroTouch to Host This is it: The Last Chance [...]
RCM Best Practices
2014-07-31    
2:00 pm - 3:00 pm
In today’s cost-conscious healthcare environment every dollar counts. Yet, inefficient billing processes are costing practices up to 15% of their revenue annually. The areas of [...]
Events on 2014-07-22
MedInformatix Summit 2014
22 Jul 14
New Orleans
Events on 2014-07-23
MMGMA 2014 Summer Conference
23 Jul 14
Duluth
Events on 2014-07-31
Articles

Dec 10: Study Identifies & Tracks Multiple Sclerosis With EHR Data, Algorithms

regenstrief institute and indiana university

Using natural language processing technology in electronic health record systems has helped identify patients with multiple sclerosis and collect information on disease traits, according to a study by researchers at Vanderbilt University Medical Center, Health Data Management reports.

Details of the Study

The study — published in the Journal of the American Medical Informatics Association — identified 5,789 patients with MS by using information from their EHRs to create an algorithm. The algorithm included data from:

  • ICD-9 codes;
  • Medications; and
  • Text keywords.

Researchers also collected data on the clinical course of disease progression.

According to the study’s authors, “This is one of the first studies to focus on specific traits of a disease by text mining of the [EHR].”

The study found that for all clinical traits examined:

  • Precision was 87%; and
  • Specificity was greater than 80% (Goedert, Health Data Management, 12/7).

Reaction

The researchers wrote , “This dataset provides a rich resource for better understanding MS and also shows that extraction of detailed disease states and markers of prognosis in patients with chronic disease is possible and may yield a powerful tool in chronic disease research.”

They added, “This information is extractable from clinic notes by simple algorithms, with high specificity, precision, and recall”

source