Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
3
4
5
6
7
8
9
10
11
12
13
12:00 AM - 29th ECCMID
14
16
17
18
19
20
21
22
23
25
26
27
29
30
1
2
3
4
5
29th ECCMID
2019-04-13 - 2019-04-16    
All Day
Welcome to ECCMID 2019! We invite you to the 29th European Congress of Clinical Microbiology & Infectious Diseases, which will take place in Amsterdam, Netherlands, [...]
4th International Conference on  General Practice & Primary Care
2019-04-15 - 2019-04-16    
All Day
The 4th International Conference on General Practice & Primary Care going to be held at April 15-16, 2019 Berlin, Germany. Designation Statement The theme of [...]
Digital Health Conference 2019
2019-04-24 - 2019-04-25    
12:00 am
An Innovative Bridging for Modern Healthcare About Hosting Organization: conference series llc ltd |Conference Series llc ltd Houston USA| April 24-25,2019 Conference series llc ltd, [...]
International Conference on  Digital Health
2019-04-24 - 2019-04-25    
All Day
Details of Digital Health 2019 conference in USA : Conference Name                              [...]
16th Annual World Health Care Congress -WHCC19
2019-04-28 - 2019-05-01    
All Day
16th Annual World Health Care Congress will be organized during April 28 - May 1, 2019 at Washington, DC Who Attends Hospitals, Health Systems, & [...]
Events on 2019-04-13
29th ECCMID
13 Apr 19
Amsterdam
Events on 2019-04-24
Events on 2019-04-28
Articles

Dec 9: Study-EHR Promotes Better Understanding of Multiple Sclerosis

medical scribes boost ehr productivity

Researchers at Vanderbilt University Medical Center have used natural language processing technology in an electronic medical records system to identify patients with multiple sclerosis and collect data on traits of their disease course.

The work is significant, researchers say, because much remains unknown about the course of the disease, which varies widely among patients. “Most research studies have focused on the origin of the disease, partly because of the difficulty in ascertaining sufficient longitudinal clinical data to study the disease course,” according to the study published in the Journal of the American Medical Informatics Association. “Electronic medical records may provide such a tool. We have previously shown that genomic signals of MS risk may be replicated using EMR-derived cohorts. In this paper, we evaluated algorithms to extract detailed clinical information for the disease course of MS.”

The study used algorithms based on ICD-9 codes, text keywords and medications to identify 5,789 patients with MS, and collected detailed data on the clinical course of the patients’ disease to measure progression of disability. “For all clinical traits extracted, precision was at least 87 percent and specificity was greater than 80 percent.”

Many studies have identified individuals serving as cases and controls for disease status using EMR data, the study notes. “This is one of the first studies to focus on specific traits of a disease by text mining of the EMR. A few other studies have used text mining approaches to extract blood pressures, pacemaker implantations and left ventricular ejection fractions as a marker of heart failure. We have shown that detailed clinical information valuable to research studies is recorded in medical records of individuals with MS, and that this information can be extracted in a highly reliable manner.”

The study, “Automated Extraction of Clinical Traits of Multiple Sclerosis in Electronic Medical Records,” is available here. Source