Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
19
21
22
24
26
27
28
29
30
11 Jun
2019-06-11 - 2019-06-13    
All Day
HIMSS and Health 2.0 European Conference Helsinki, Finland 11-13 June 2019 The HIMSS & Health 2.0 European Conference will be a unique three day event you [...]
7th Epidemiology and Public Health Conference
2019-06-17 - 2019-06-18    
All Day
Time : June 17-18, 2019 Dubai, UAE Theme: Global Health a major topic of concern in Epidemiology Research and Public Health study Epidemiology Meet 2019 in [...]
Inaugural Digital Health Pharma Congress
2019-06-17 - 2019-06-21    
All Day
Inaugural Digital Health Pharma Congress Join us for World Pharma Week 2019, where 15th Annual Biomarkers & Immuno-Oncology World Congress and 18th Annual World Preclinical Congress, two of Cambridge [...]
International Forum on Advancements in Healthcare - IFAH USA 2019
2019-06-18 - 2019-06-20    
All Day
International Forum on Advancements in Healthcare - IFAH (formerly Smart Health Conference) USA, will bring together 1000+ healthcare professionals from across the world on a [...]
Annual Congress on  Yoga and Meditation
2019-06-20 - 2019-06-21    
All Day
About Conference With the support of Organizing Committee Members, “Annual Congress on Yoga and Meditation” (Yoga Meditation 2019) is planned to be held in Dubai, [...]
Collaborative Care & Health IT Innovations Summit
2019-06-23 - 2019-06-25    
All Day
Technology Integrating Pre-Acute and LTPAC Services into the Healthcare and Payment EcosystemsHyatt Regency Inner Harbor 300 Light Street, Baltimore, Maryland, United States of America, 21202 [...]
2019 AHA LEADERSHIP SUMMIT
2019-06-25 - 2019-06-27    
All Day
Welcome Welcome to attendee registration for the 27th Annual AHA/AHA Center for Health Innovation Leadership Summit! The 2019 AHA Leadership Summit promotes a revolution in thinking [...]
Events on 2019-06-11
11 Jun
Events on 2019-06-17
Events on 2019-06-20
Events on 2019-06-23
Events on 2019-06-25
2019 AHA LEADERSHIP SUMMIT
25 Jun 19
San Diego
Articles

Dec 9: Study-EHR Promotes Better Understanding of Multiple Sclerosis

medical scribes boost ehr productivity

Researchers at Vanderbilt University Medical Center have used natural language processing technology in an electronic medical records system to identify patients with multiple sclerosis and collect data on traits of their disease course.

The work is significant, researchers say, because much remains unknown about the course of the disease, which varies widely among patients. “Most research studies have focused on the origin of the disease, partly because of the difficulty in ascertaining sufficient longitudinal clinical data to study the disease course,” according to the study published in the Journal of the American Medical Informatics Association. “Electronic medical records may provide such a tool. We have previously shown that genomic signals of MS risk may be replicated using EMR-derived cohorts. In this paper, we evaluated algorithms to extract detailed clinical information for the disease course of MS.”

The study used algorithms based on ICD-9 codes, text keywords and medications to identify 5,789 patients with MS, and collected detailed data on the clinical course of the patients’ disease to measure progression of disability. “For all clinical traits extracted, precision was at least 87 percent and specificity was greater than 80 percent.”

Many studies have identified individuals serving as cases and controls for disease status using EMR data, the study notes. “This is one of the first studies to focus on specific traits of a disease by text mining of the EMR. A few other studies have used text mining approaches to extract blood pressures, pacemaker implantations and left ventricular ejection fractions as a marker of heart failure. We have shown that detailed clinical information valuable to research studies is recorded in medical records of individuals with MS, and that this information can be extracted in a highly reliable manner.”

The study, “Automated Extraction of Clinical Traits of Multiple Sclerosis in Electronic Medical Records,” is available here. Source