Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
24
25
26
27
28
29
30
1
2
3
MedInformatix Summit 2014
2014-07-22 - 2014-07-25    
All Day
MedInformatix is excited to present this year’s meeting! 07/22 Tuesday Focus: Product Development Highlights:Latest Updates in Product Development, Interactive Roundtables, and More. 07/23 Wednesday Focus: Healthcare Trends [...]
MMGMA 2014 Summer Conference
2014-07-23 - 2014-07-25    
All Day
Mark your calendar for Wednesday - Friday, July 23-25, and join your colleagues and business partners in Duluth for our MMGMA Summer Conference: Delivering Superior [...]
This is it: The Last Chance for EHR Stimulus Funds! Webinar
2014-07-31    
10:00 am - 11:00 am
Contact: Robert Moberg ChiroTouch 9265 Sky Park Court Suite 200 San Diego, CA 92123 Phone: 619-528-0040 ChiroTouch to Host This is it: The Last Chance [...]
RCM Best Practices
2014-07-31    
2:00 pm - 3:00 pm
In today’s cost-conscious healthcare environment every dollar counts. Yet, inefficient billing processes are costing practices up to 15% of their revenue annually. The areas of [...]
Events on 2014-07-22
MedInformatix Summit 2014
22 Jul 14
New Orleans
Events on 2014-07-23
MMGMA 2014 Summer Conference
23 Jul 14
Duluth
Events on 2014-07-31
Articles

Dec 9: Study-EHR Promotes Better Understanding of Multiple Sclerosis

medical scribes boost ehr productivity

Researchers at Vanderbilt University Medical Center have used natural language processing technology in an electronic medical records system to identify patients with multiple sclerosis and collect data on traits of their disease course.

The work is significant, researchers say, because much remains unknown about the course of the disease, which varies widely among patients. “Most research studies have focused on the origin of the disease, partly because of the difficulty in ascertaining sufficient longitudinal clinical data to study the disease course,” according to the study published in the Journal of the American Medical Informatics Association. “Electronic medical records may provide such a tool. We have previously shown that genomic signals of MS risk may be replicated using EMR-derived cohorts. In this paper, we evaluated algorithms to extract detailed clinical information for the disease course of MS.”

The study used algorithms based on ICD-9 codes, text keywords and medications to identify 5,789 patients with MS, and collected detailed data on the clinical course of the patients’ disease to measure progression of disability. “For all clinical traits extracted, precision was at least 87 percent and specificity was greater than 80 percent.”

Many studies have identified individuals serving as cases and controls for disease status using EMR data, the study notes. “This is one of the first studies to focus on specific traits of a disease by text mining of the EMR. A few other studies have used text mining approaches to extract blood pressures, pacemaker implantations and left ventricular ejection fractions as a marker of heart failure. We have shown that detailed clinical information valuable to research studies is recorded in medical records of individuals with MS, and that this information can be extracted in a highly reliable manner.”

The study, “Automated Extraction of Clinical Traits of Multiple Sclerosis in Electronic Medical Records,” is available here. Source