Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
3
4
5
6
7
8
10
11
12
13
14
15
16
19
11:00 AM - Charmalot 2025
20
21
22
23
24
25
26
27
29
1
2
3
4
5
Oracle Health and Life Sciences Summit 2025
2025-09-09 - 2025-09-11    
12:00 am
The largest gathering of Oracle Health (Formerly Cerner) users. It seems like Oracle Health has learned that it’s not enough for healthcare users to be [...]
MEDITECH Live 2025
2025-09-17 - 2025-09-19    
8:00 am - 4:30 pm
This is the MEDITECH user conference hosted at the amazing MEDITECH conference venue in Foxborough (just outside Boston). We’ll be covering all of the latest [...]
AI Leadership Strategy Summit
2025-09-18 - 2025-09-19    
12:00 am
AI is reshaping healthcare, but for executive leaders, adoption is only part of the equation. Success also requires making informed investments, establishing strong governance, and [...]
OMD Educates: Digital Health Conference 2025
2025-09-18 - 2025-09-19    
7:00 am - 5:00 pm
Why Attend? This is a one-of-a-kind opportunity to get tips from experts and colleagues on how to use your EMR and other innovative health technology [...]
Charmalot 2025
2025-09-19 - 2025-09-21    
11:00 am - 9:00 pm
This is the CharmHealth annual user conference which also includes the CharmHealth Innovation Challenge. We enjoyed the event last year and we’re excited to be [...]
Civitas 2025 Annual Conference
2025-09-28 - 2025-09-30    
8:00 am
Civitas Networks for Health 2025 Annual Conference: From Data to Doing Civitas’ Annual Conference convenes hundreds of industry leaders, decision-makers, and innovators to explore interoperability, [...]
TigerConnect + eVideon Unite Healthcare Communications
2025-09-30    
10:00 am
TigerConnect’s acquisition of eVideon represents a significant step forward in our mission to unify healthcare communications. By combining smart room technology with advanced clinical collaboration [...]
Pathology Visions 2025
2025-10-05 - 2025-10-07    
8:00 am - 5:00 pm
Elevate Patient Care: Discover the Power of DP & AI Pathology Visions unites 800+ digital pathology experts and peers tackling today's challenges and shaping tomorrow's [...]
Events on 2025-09-09
Events on 2025-09-17
MEDITECH Live 2025
17 Sep 25
MA
Events on 2025-09-18
OMD Educates: Digital Health Conference 2025
18 Sep 25
Toronto Congress Centre
Events on 2025-09-19
Charmalot 2025
19 Sep 25
CA
Events on 2025-09-28
Civitas 2025 Annual Conference
28 Sep 25
California
Events on 2025-10-05
Articles

How Machine Learning Can Change Healthcare

marketing strategies

How Machine Learning Can Change Healthcare

Machine learning can do a lot to change the landscape of the healthcare industry for the better. It can aid doctors and nurses in diagnosing and treating patients, and help improve patient outcomes. Here are 5 ways machine learning can change healthcare.

1. Testing and Diagnosis

One of the basic tenets of machine learning is increasing the power of algorithms and pattern recognition. These kinds of powerful predictive data analytics can be a game changer for testing and diagnostics. Better imaging and testing technologies can pick up more detail and test smaller sample sizes with every advancement. There is more and more medical research available for healthcare providers to access every day. As technologies like machine learning and artificial intelligence improve, so too can testing and diagnosis. Many machine learning models are tailor made for recognizing patterns and helping people narrow down search results. While the type of machine learning model you need depends greatly on the problem you’re facing, much of the work of diagnosing a disease involves pattern recognition and narrowing down causes, so utilizing machine learning is a good approach.

2. Treatment

While human doctors and nurses aren’t going to be replaced by robots anytime soon, machine learning and AI can aid in treatment plans immensely. The goal of supplementing treatment plans with AI is twofold: reducing patient cost and improving clinical outcomes. AI can help doctors make well-informed decisions regarding their patients’ care. Healthcare providers can leverage machine learning models as analysis tools to create clinical care guidelines based on past treatment decisions and outcomes, industry research and other retrospective data. Machine learning can also be leveraged at the consumer level in the form of healthcare apps. While these apps cannot replace actual treatment by a professional, they enable people to track their own patterns for everything from mood to hydration, easily find additional support and discover coping strategies that work for them.

3. Speed

Speed is key to many aspects of healthcare. This is most obvious in emergency situations, but it’s also important to the more mundane and routine aspects of medical care. General practitioners will often have jampacked schedules and patients coming in for a quick flu shot or an upset stomach can be irritable and impatient. AI can keep doctors’ schedules moving smoothly and help mitigate scheduling issues such as appointments that go over the allotted time. It can also place a lot of knowledge and ideas right at a doctor’s fingertips. If a patient comes in with an issue and the doctor isn’t sure of the cause, he or she can check medical databases and data analytics software to help figure out a diagnosis or solution.

4. Accuracy

Accuracy is integral to healthcare, too. Everything from brain surgery right down to the exact dosage of medication depends on healthcare providers being as accurate as humanly possible. Robots and nanotechnology can help immensely in surgery and testing. Machine learning and AI model trends in diseases over time and improve decision accuracy. Having a good predictive analytics system can root out outliers in the data and help healthcare providers focus on the most accurate up-to-date data.

5. Follow-up Care

It can sometimes be difficult for a patient to follow his or her treatment plan after leaving the doctor’s office. Machine learning can even help with this issue. Patients can download apps recommended by doctors to set up alerts to take medications and meet treatment target goals. The concept of a digital health coach is another avenue researchers are pursuing. The health coach or assistance would be a connection between the doctor and the patient, sending reminders to the patient and sending information back to the doctor. All of these technologies are being developed to help doctors ensure their patients receive continual and preventative care and avoid unnecessary readmittance. Machine learning and AI will never replace the human compassion that healthcare requires, but these technologies can help healthcare providers improve the care and treatment they offer their patients.