Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
2
3
5
6
7
8
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
30
1
2
3
4
5
The 10th Annual Traumatic Brain Injury Conference
2020-06-01 - 2020-06-02    
All Day
Arrowhead Publishers is pleased to announce its 10th Annual Traumatic Brain Injury Conference will be coming back to Washington, DC on June 1-2, 2020. This conference brings [...]
5th World Congress On Public Health, Epidemiology & Nutrition
2020-06-01 - 2020-06-02    
All Day
We invite all the participants across the world to attend the “5th World Congress on Public Health, Epidemiology & Nutrition” during June 01-02, 2020; Sydney, [...]
Global Conference On Clinical Anesthesiology And Surgery
2020-06-04 - 2020-06-05    
All Day
Miami is an International city at Florida's southeastern tip. Its Cuban influence is reflected in the cafes and cigar shops that line Calle Ocho in [...]
5th International Conferences On Clinical And Counseling Psychology
2020-06-09 - 2020-06-10    
All Day
Conferenceseries LLC Ltd and its subsidiaries including iMedPub Ltd and Conference Series Organise 3000+ Conferences across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open [...]
50th International Conference On Nursing And Healthcare
2020-06-10 - 2020-06-11    
All Day
Conference short name: Nursing Conferences 2020 Full name : 50th International conference on Nursing and Healthcare Date : June 10-11, 2020 Place : Frankfurt, Germany [...]
Connected Claims USA Virtual
The insurance industry is built to help people when they are in need, and only the claims organization makes that possible. Now, the world faces [...]
Federles Master Tutorial On Abdominal Imaging
2020-06-29 - 2020-07-01    
All Day
The course is designed to provide the tools for participants to enhance abdominal imaging interpretation skills utilizing the latest imaging technologies. Time: 1:00 pm - [...]
IASTEM - 864th International Conference On Medical, Biological And Pharmaceutical Sciences ICMBPS
2020-07-01 - 2020-07-02    
All Day
IASTEM - 864th International Conference on Medical, Biological and Pharmaceutical Sciences ICMBPS will be held on 3rd - 4th July, 2020 at Hamburg, Germany . [...]
International Conference On Medical & Health Science
2020-07-02 - 2020-07-03    
All Day
ICMHS is being organized by Researchfora. The aim of the conference is to provide the platform for Students, Doctors, Researchers and Academicians to share the [...]
Mental Health, Addiction, And Legal Aspects Of End-Of-Life Care CME Cruise
2020-07-03 - 2020-07-10    
All Day
Mental Health, Addiction Medicine, and Legal Aspects of End-of-Life Care CME Cruise Conference. 7-Night Cruise to Alaska from Seattle, Washington on Celebrity Cruises Celebrity Solstice. [...]
ISER- 843rd International Conference On Science, Health And Medicine ICSHM
2020-07-03 - 2020-07-04    
All Day
ISER- 843rd International Conference on Science, Health and Medicine (ICSHM) is a prestigious event organized with a motivation to provide an excellent international platform for the academicians, [...]
04 Jul
2020-07-04    
12:00 am
ICRAMMHS is to bring together innovative academics and industrial experts in the field of Medical, Medicine and Health Sciences to a common forum. All the [...]
Events on 2020-06-04
Events on 2020-06-10
Events on 2020-06-23
Connected Claims USA Virtual
23 Jun 20
London
Events on 2020-06-29
Events on 2020-07-02
Articles

Jul 09 : EHRs enable researchers to predict patient depression

predict patient depression
Researchers from Stanford University have demonstrated the usefulness of EHR data in predicting the diagnosis of depression up to a year in advance, according to research published in the Journal of the American Medical Informatics Association (JAMIA).
“Our results suggest the use of EHR data can improve the timely diagnosis of depression, which is associated with better prognoses when combined with prompt initiation of treatment,” the authors maintain. “Ideally, we are searching not only for models that can diagnose depression early to improve prognosis, but also for moderators that predict outcomes and enable personalized treatment. The latter requires significant work.”
The research team of Huang et al. culled data from the Epic Systems of Palo Alto Medical Foundation (PAMF) and Group Health Research Institute (GHRI) — 35,000 from the former and 5,651 from the latter. The information pulled from the EHRs comprises:
• demographic data;
• ICD-9, RxNorm, and CPT codes;
• progress notes;
• pathology, radiology, and transcription reports.
Researchers used three criteria to identify patients with depression: an ICD-9 code, the presence of a depression disorder term in the clinical text, and the presence of an anti-depressive drug ingredient term in the clinical text. They then compared cohorts of depressed and non-depressed patients in regression models to predict a diagnosis of depression, predict a response to treatment, and assess the severity of depression.
Here is what Huang et al. found:
The model for predicting diagnosis uses ICD-9 codes, disease and drug ingredient terms extracted from clinical notes, and patient demographics as features to achieve an AUC [area under the receiver operating characteristic] of 0.70–0.80 for predicting a diagnosis of depression in patients, up to 12 months before the first diagnosis of depression. Even up to a year before their diagnosis of depression, patients show patterns in their medical history that our model can detect …  In addition, our model for identifying patients with severe baseline depression achieved an AUC of 0.718 when compared against patients with minimal and mild depression.
Based on their research, the authors argue that the adequate treatment of depression relies on three factors: accurately identifying patients both with and without depression, considering the severity of the depression, and using sufficiently large samples of patient data. “These results suggest the use of EHR data can improve the timely diagnosis of depression, a disorder that primary care physicians often miss,” they conclude.
With the economic cost of depression in the United States reaching $44 billion annually as a result of direct expenses and loss of productivity, the findings of Huang et al. could prove encouraging in leveraging EHR data to treat costly chronic diseases both of the body and mind.