Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
28
29
30
31
25th International Conference on Dermatology & Skin Care
2020-04-27 - 2020-04-28    
All Day
About Conference Derma 2020 Derma 2020 welcomes all the attendees, lecturers, patrons and other research expertise from all over the world to 25th International Conference on Dermatology & [...]
Insurance AI and Innovative Tech Virtual
2020-05-27 - 2020-05-28    
All Day
In light of the rapidly evolving impact of COVID-19 globally, we have made the decision to turn Insurance AI and Innovative Tech 2020 into a [...]
Insurance AI and Innovative Tech USA Virtual
2020 has seen the insurance industry change in an unprecedented fashion. What was once viewed as long-term development strategies have now been fast-tracked into today’s [...]
27 May
2020-05-27 - 2020-05-28    
All Day
2020 has seen the insurance industry change in an unprecedented fashion. What was once viewed as long-term development strategies have now been fast-tracked into today’s [...]
Events on 2020-04-27
Articles

Jul 14 : Epidemic surveillance using an EMR

hipaa compliance
Read More

Abstract

BACKGROUNDS:

Electronic medical records (EMR) form a rich repository of information that could benefit public health. We asked how structured and free-text narrative EMR data should be combined to improve epidemic surveillance for acute respiratory infections (ARI).

METHODS:

Eight previously characterized ARI case detection algorithms (CDA) were applied to historical EMR entries to create authentic time series of daily ARI case counts (background). An epidemic model simulated influenza cases (injection). From the time of the injection, cluster-detection statistics were applied daily on paired background+injection (combined) and background-only time series. This cycle was then repeated with the injection shifted to each week of the evaluation year. We computed: a) the time from injection to the first statistical alarm uniquely found in the combined dataset (Detection Delay); b) how often alarms originated in the background-only dataset (false-alarm rate, or FAR); and c) the number of cases found within these false alarms (Caseload). For each CDA, we plotted the Detection Delay as a function of FAR or Caseload, over a broad range of alarm thresholds.

RESULTS:

CDAs that combined text analyses seeking ARI symptoms in clinical notes with provider-assigned diagnostic codes in order to maximize the precision rather than the sensitivity of case-detection lowered Detection Delay at any given FAR or Caseload.

CONCLUSION:

An empiric approach can guide the integration of EMR data into case-detection methods that improve both the timeliness and efficiency of epidemic detection.

Source