Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
28
29
1
2
3
6
7
8
9
10
12
13
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
Transforming Medicine: Evidence-Driven mHealth
2015-09-30 - 2015-10-02    
8:00 am - 5:00 pm
September 30-October 2, 2015Digital Medicine 2015 Save the Date (PDF, 1.23 MB) Download the Scripps CME app to your smart phone and/or tablet for the conference [...]
Health 2.0 9th Annual Fall Conference
2015-10-04 - 2015-10-07    
All Day
October 4th - 7th, 2015 Join us for our 9th Annual Fall Conference, October 4-7th. Set over 3 1/2 days, the 9th Annual Fall Conference will [...]
2nd International Conference on Health Informatics and Technology
2015-10-05    
All Day
OMICS Group is one of leading scientific event organizer, conducting more than 100 Scientific Conferences around the world. It has about 30,000 editorial board members, [...]
MGMA 2015 Annual Conference
2015-10-11 - 2015-10-14    
All Day
In the business of care delivery®, you have to be ready for everything. As a valued member of your organization, you’re the person that others [...]
5th International Conference on Wireless Mobile Communication and Healthcare
2015-10-14 - 2015-10-16    
All Day
5th International Conference on Wireless Mobile Communication and Healthcare - "Transforming healthcare through innovations in mobile and wireless technologies" The fifth edition of MobiHealth proposes [...]
International Health and Wealth Conference
2015-10-15 - 2015-10-17    
All Day
The International Health and Wealth Conference (IHW) is one of the world's foremost events connecting Health and Wealth: the industries of healthcare, wellness, tourism, real [...]
Events on 2015-09-30
Events on 2015-10-04
Events on 2015-10-05
Events on 2015-10-11
MGMA 2015 Annual Conference
11 Oct 15
Nashville
Events on 2015-10-15
Articles

Large models identify social determinants in records

Social determinants of health (SDoH) significantly influence patient outcomes, yet their documentation is frequently incomplete or absent in the structured data of electronic health records (EHRs). The utilization of large language models (LLMs) holds promise in efficiently extracting SDoH from EHRs, contributing to both research and clinical care. However, challenges such as class imbalance and data limitations arise when handling this sparsely documented yet vital information.

In our investigation, we explored effective approaches to leverage LLMs for extracting six distinct SDoH categories from narrative EHR text. The standout performers included the fine-tuned Flan-T5 XL, achieving a macro-F1 of 0.71 for any SDoH mentions, and Flan-T5 XXL, attaining a macro-F1 of 0.70 for adverse SDoH mentions. The incorporation of LLM-generated synthetic data during training had varying effects across models and architectures but notably improved the performance of smaller Flan-T5 models (delta F1 + 0.12 to +0.23).

Our best-fine-tuned models outperformed zero- and few-shot performance of ChatGPT-family models in their respective settings, except for GPT4 with 10-shot prompting for adverse SDoH. These fine-tuned models exhibited a reduced likelihood of changing predictions when race/ethnicity and gender descriptors were introduced to the text, indicating diminished algorithmic bias (p < 0.05). Notably, our models identified 93.8% of patients with adverse SDoH, a significant improvement compared to the mere 2.0% captured by ICD-10 codes. These results highlight the potential of LLMs in enhancing real-world evidence related to SDoH and in identifying patients who could benefit from additional resource support.