Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
31
1
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
21
22
23
25
26
27
29
30
1
2
3
4
02 Apr
2014-04-02    
All Day
Conference Link: http://www.nhlc-cnls.ca/default1.asp Conference Contact: Cindy MacBride at 1-800-363-9056 ext. 213, or cmacbride@cchl-ccls.ca Register: http://www.confmanager.com/main.cfm?cid=2725 Hotel: Location: Fairmont Banff Springs Hotel 405 Spray Ave Banff, [...]
HIMSS 15 Annual Conference & Exhibition
2014-04-12    
All Day
HIMSS15 may be months away, but the excitement is here...right now. It's not too early to start making plans for next April. Whether you're new [...]
2015 HIMSS Annual Conference & Exhibition
2014-04-12 - 2014-04-16    
All Day
The 2015 HIMSS Annual Conference & Exhibition, April 12-16 in Chicago, brings together 38,000+ healthcare IT professionals, clinicians, executives and vendors from around the world. [...]
IVC Miami Conference
The International Vein Congress is the premier professional meeting for vein specialists. IVC, based in Miami, FL, offers renowned, comprehensive education for both veterans and [...]
C.D. Howe Institute Roundtable Luncheon
2014-04-28    
12:00 pm - 1:30 pm
Navigating the Healthcare System: The Patient’s Perspective Please join us for this Roundtable Luncheon at the C.D. Howe Institute with Richard Alvarez, Chief Executive Officer, [...]
Events on 2014-04-02
Events on 2014-04-12
Events on 2014-04-24
IVC Miami Conference
24 Apr 14
FL
Events on 2014-04-28
Articles

Large models identify social determinants in records

Social determinants of health (SDoH) significantly influence patient outcomes, yet their documentation is frequently incomplete or absent in the structured data of electronic health records (EHRs). The utilization of large language models (LLMs) holds promise in efficiently extracting SDoH from EHRs, contributing to both research and clinical care. However, challenges such as class imbalance and data limitations arise when handling this sparsely documented yet vital information.

In our investigation, we explored effective approaches to leverage LLMs for extracting six distinct SDoH categories from narrative EHR text. The standout performers included the fine-tuned Flan-T5 XL, achieving a macro-F1 of 0.71 for any SDoH mentions, and Flan-T5 XXL, attaining a macro-F1 of 0.70 for adverse SDoH mentions. The incorporation of LLM-generated synthetic data during training had varying effects across models and architectures but notably improved the performance of smaller Flan-T5 models (delta F1 + 0.12 to +0.23).

Our best-fine-tuned models outperformed zero- and few-shot performance of ChatGPT-family models in their respective settings, except for GPT4 with 10-shot prompting for adverse SDoH. These fine-tuned models exhibited a reduced likelihood of changing predictions when race/ethnicity and gender descriptors were introduced to the text, indicating diminished algorithmic bias (p < 0.05). Notably, our models identified 93.8% of patients with adverse SDoH, a significant improvement compared to the mere 2.0% captured by ICD-10 codes. These results highlight the potential of LLMs in enhancing real-world evidence related to SDoH and in identifying patients who could benefit from additional resource support.