Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
28
29
30
31
1
2
3
4
5
6
9
10
12
16
17
19
22
23
27
29
30
1
10th Asian Conference on Emergency Medicine (ACEM 2019)
ABOUT 10TH ASIAN CONFERENCE ON EMERGENCY MEDICINE (ACEM 2019) It is a great pleasure and an honor to extend to you a warm invitation to [...]
APAPU SPUNZA Conference 2019
2019-11-08 - 2019-11-10    
All Day
ABOUT APAPU/ SPUNZA CONFERENCE 2019 We look forward to welcoming you to the combined APAPU/ SPUNZA meeting in Perth – the first time the event [...]
2nd World Cosmetic and Dermatology Congress
2019-11-11 - 2019-11-12    
All Day
ABOUT 2ND WORLD COSMETIC AND DERMATOLOGY CONGRESS 2nd World Cosmetic and Dermatology Congress is going to be held at Helsinki, Finland during November 11-12, 2019. International Congress on Cosmetic [...]
Global Experts Meet on Advanced Technologies in Diabetes Research and Therapy
2019-11-11 - 2019-11-12    
All Day
ABOUT GLOBAL EXPERTS MEET ON ADVANCED TECHNOLOGIES IN DIABETES RESEARCH AND THERAPY It is an incredible delight and a respect to stretch out our warm [...]
Global Congress on Cancer Immunology and Epigenetics
2019-11-13 - 2019-11-14    
All Day
ABOUT GLOBAL CONGRESS ON CANCER IMMUNOLOGY AND EPIGENETICS Epigenetics Conference, The world’s largest Epigenetics Conference and Gathering for the Research Community. Join the Global Congress [...]
Advantage Healthcare-India 2019
ABOUT ADVANTAGE HEALTHCARE-INDIA 2019 ADVANTAGES OF HEALTHCARE AND WELLNESS INDUSTRY IN INDIA: State of the art Hospitals with Excellent Infrastructure Largest pool of Highly qualified [...]
4th International Conference on Obstetrics and Gynecology
2019-11-14 - 2019-11-15    
All Day
ABOUT 4TH INTERNATIONAL CONFERENCE ON OBSTETRICS AND GYNECOLOGY Theme: Current Breakthroughs and Innovative Approaches towards Improving Women’s Reproductive HealthIt’s our pleasure to invite all the [...]
Encompass Health at AAPM&R 2019 in San Antonio
2019-11-15 - 2019-11-17    
All Day
Encompass Health at AAPM&R 2019 in San Antonio San Antonio, Texas Nov 14, 2019 11:00 a.m. CST Headed to AAPM&R’s 2019 Annual Assembly? Swing by [...]
7th Annual Congress on Dental Medicine and Orthodontics
ABOUT 7TH ANNUAL CONGRESS ON DENTAL MEDICINE AND ORTHODONTICS Dentistry Medicine 2019 is a perfect opportunity intended for International well-being Dental and Oral experts too. [...]
ABOUT MEDICA 2019
2019-11-18 - 2019-11-21    
All Day
ABOUT MEDICA 2019   MEDICA is the world’s largest event for the medical sector. For more than 40 years it has been firmly established on [...]
7th Annual Congress on Dental Medicine and Orthodontics
2019-11-18 - 2019-11-19    
All Day
ABOUT 7TH ANNUAL CONGRESS ON DENTAL MEDICINE AND ORTHODONTICS Dentistry Medicine 2019 is a perfect opportunity intended for International well-being Dental and Oral experts too. [...]
20 Nov
2019-11-20 - 2019-11-21    
All Day
  Connected Insurance: The USA’s Premier Gathering Defining the Future of Insurance Since the year 2000, 50 percent of the Fortune 500 companies have disappeared [...]
International Conference on Pathology and Infectious Diseases
2019-11-21 - 2019-11-22    
All Day
ABOUT INTERNATIONAL CONFERENCE ON PATHOLOGY AND INFECTIOUS DISEASES Infectious disease 2019 gathers the world’s leading scientists, researchers and scholars to exchange and share their professional [...]
15th Asian-Pacific Congress of Hypertension 2019
2019-11-24 - 2019-11-27    
All Day
ABOUT 15TH ASIAN-PACIFIC CONGRESS OF HYPERTENSION 2019 The Asian-Pacific Society of Hypertension will hold the 15th Asian Pacific Congress of Hypertension (APCH2019) in Brisbane, Australia, [...]
18th Annual Conference on Urology and Nephrological Disorders
2019-11-25 - 2019-11-26    
All Day
ABOUT 18TH ANNUAL CONFERENCE ON UROLOGY AND NEPHROLOGICAL DISORDERS Urology 2019 is an integration of the science, theory and clinical knowledge for the purpose of [...]
2nd World Heart Rhythm Conference
2019-11-25 - 2019-11-26    
All Day
ABOUT 2ND WORLD HEART RHYTHM CONFERENCE 2nd World Heart Rhythm Conference is among the World’s driving Scientific Conference to unite worldwide recognized scholastics in the [...]
Digital Health Forum 2019
ABOUT DIGITAL HEALTH FORUM 2019 Join us on 26-27 November in Berlin to discuss the power of AI and ML for healthcare, healthcare transformation by [...]
2nd Global Nursing Conference & Expo
ABOUT 2ND GLOBAL NURSING CONFERENCE & EXPO Events Ocean extends an enthusiastic and sincere welcome to the 2nd GLOBAL NURSING CONFERENCE & EXPO ’19. The [...]
International Conference on Obesity and Diet Imbalance 2019
2019-11-28 - 2019-11-29    
All Day
ABOUT INTERNATIONAL CONFERENCE ON OBESITY AND DIET IMBALANCE 2019 Obesity Diet 2019 is a worldwide stage to examine and find out concerning Weight Management, Childhood [...]
Events on 2019-11-07
Events on 2019-11-08
Events on 2019-11-13
Events on 2019-11-14
Events on 2019-11-15
Events on 2019-11-20
20 Nov
20 Nov 19
Chicago
Events on 2019-11-21
Events on 2019-11-24
15th Asian-Pacific Congress of Hypertension 2019
24 Nov 19
Merivale St & Glenelg Street
Events on 2019-11-26
Digital Health Forum 2019
26 Nov 19
Marinelli Rd Rockville
Events on 2019-11-28
Articles

Machine learning tool identifies rare, undiagnosed immune disorders through patients’ electronic health records

In comparison to present techniques, researchers claim that a machine learning tool can uncover a large number of patients with uncommon, undetected diseases years early, potentially improving outcomes and lowering cost and morbidity. The results, authored by UCLA Health researchers, are detailed in Science Translational Medicine.

“People with uncommon illnesses might experience protracted postponements in identification and therapy, leading to needless examinations, escalating sickness, emotional strains, and monetary difficulties,” stated Manish Butte, MD, Ph.D., a pediatrician, human genetics, and microbiology/immunology professor at UCLA who treats these patients in his clinic.

Artificial intelligence techniques, such as machine learning, are finding their way into the medical field. By finding patterns in patients’ electronic health records that mimic those of individuals who are known to have the diseases, we were able to use these technologies to design a method to speed up the identification of undiagnosed patients.”

This study concentrated on a group of disorders collectively referred to as common variable immunodeficiency (CVID), which can be extremely rare, have symptoms that vary widely from person to person, and frequently go undiagnosed for years or decades after symptoms first appear.

Furthermore, over 60 genes have been linked to diseases thus far, and each individual’s problems are frequently caused by mutations in only one gene—but not the same gene from one manifestation of the disorder to another. There is no one causative mechanism, hence a clear diagnosis cannot be made using genetic testing.

One of the most prevalent inborn errors of immunity (IEI) in humans is CVID. IEIs are uncommon illnesses that make a person more vulnerable to infection, autoimmunity, and autoinflammation. There are currently about 500 known IEIs, and more are found every year. Estimated to impact 1 in 25,000 individuals, CVID is linked to impairments in both amount and function of antibodies, as well as compromised immunological responses.

Drawing on the term “phenotypes,” which refers to the observable characteristics or traits of a disease as seen in an individual, Butte and Bogdan Pasaniuc, Ph.D., a professor of computational medicine, human genetics, pathology, and laboratory medicine at UCLA David Geffen School of Medicine, led a team that developed a machine learning tool called PheNet. PheNet ranks patients according to their chance of having CVID by identifying phenotypic patterns from confirmed CVID cases.

There are numerous medical professions where uncommon immunological phenotypes, including CVID, have a clinical manifestation. For sinus infections, patients can be seen in ear, nose, and throat clinics. Pulmonology clinics may treat them for pneumonias. Long delays in diagnosis and treatment result from this fragmentation of care across multiple specialists, according to Butte, a co-senior author of the journal article alongside Pasaniuc.

Teaching immune deficits to all these busy doctors in the hopes that, even if they could identify which patients have an underlying immunological problem, they would still be too busy to refer those patients to us. We needed to locate these patients in a more effective manner.”

Our own patients say they had symptoms for years or even decades prior to being referred to our immunology clinic,” Butte continued. Numerous individuals may have received care years sooner and experienced better health outcomes if PheNet had been available. Countless patients could have received a diagnosis one to four years sooner than it did.

It is difficult to identify an electronic health record “signature” for CVID because the condition does not have a consistent clinical manifestation. In order to infer EHR signatures from patient records of patients known to have CVID and from patterns of illnesses documented in the literature, the researchers devised a computational approach.

Next, each patient receives a numerical score from the software that ranks the patients based on their likelihood of having CVID. Patients who scored highly—people the researchers refer to as “hiding in the medical system”—would be good candidates for referral to an immunology specialist.

According to Pasaniuc, the study team discovered that 74% of the top 100 patients ranked by the algorithm were likely to have CVID when they used PheNet to analyze data from millions of patient records from the UCLA electronic health record system. This was done after a blinded chart review. Butte and Pasaniuc have started implementing their AI in the actual world based on these initial results.

Initially, they validated PheNet using over 6 million patient records from several medical systems located in the University of California Data Warehouse and at Tennessee’s Vanderbilt Medical Center. Butte initiated a partnership with the immunology clinics at the University of California campuses in San Diego, Irvine, Davis, and San Francisco, wherein specialists would see the patients identified by the algorithm.

By speeding up the diagnosis of CVID, we demonstrate how artificial intelligence algorithms like PheNet may provide therapeutic benefits, and we anticipate that this will also apply to other uncommon diseases, according to Pasaniuc.

We are already seeing results from our deployment at all five of the University of California medical centers. As we extend to more diseases, we are currently refining our methodology to better detect CVID. To obtain even more details about patients and their conditions, we also intend to train the algorithm to read medical notes.

Lead author Ruth Johnson, Ph.D., a fellow at Harvard Medical School and a former member of the Pasaniuc Lab, said that tunnel vision—the condition in which different medical professionals see different parts of a disease but are unable to put the whole picture together—can be caused by limitations in the current health care system. This postpones diagnosis, particularly for the large number of CVID patients with variable multisystem symptoms. AI is capable of overcoming these challenges.

There is a rise in infections, antibiotic use, ER visits, hospital stays, and missed work and school days for each year that a diagnosis is postponed, according to the expert. The overall cost of failing to identify CVID in a timely manner is probably in the millions or billions of dollars, not to mention the emotional and financial toll it has on patients and their families.

Ruth Johnson (first author), Alexis V. Stephens, Rachel Mester, Sergey Knyazev, Lisa A. Kohn, Malika K. Freund, Leroy Bondhus, Brian L. Hill, Tommer Schwarz, Noah Zaitlen, and Valerie A. Arboleda are among the UCLA authors in addition to Butte and Pasaniuc. Contributing from Vanderbilt University’s Department of Biomedical Informatics was Lisa A. Bastarache.