Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
25
27
28
29
1
3
5
6
7
8
11
13
15
17
18
19
20
21
22
24
25
27
28
29
31
1
2
3
4
5
3rd International conference on  Diabetes, Hypertension and Metabolic Syndrome
2020-02-24 - 2020-02-25    
All Day
About Diabetes Meet 2020 Conference Series takes the immense Pleasure to invite participants from all over the world to attend the 3rdInternational conference on Diabetes, Hypertension and [...]
3rd International Conference on Cardiology and Heart Diseases
2020-02-24 - 2020-02-25    
All Day
ABOUT 3RD INTERNATIONAL CONFERENCE ON CARDIOLOGY AND HEART DISEASES The standard goal of Cardiology 2020 is to move the cardiology results and improvements and to [...]
Medical Device Development Expo OSAKA
2020-02-26 - 2020-02-28    
All Day
ABOUT MEDICAL DEVICE DEVELOPMENT EXPO OSAKA What is Medical Device Development Expo OSAKA (MEDIX OSAKA)? Gathers All Kinds of Technologies for Medical Device Development! This [...]
Beauty Care Asia Pacific Summit 2020 (BCAP)
2020-03-02 - 2020-03-04    
All Day
Groundbreaking Event to Address Asia-Pacific’s Growing Beauty Sector—Your Window to the World’s Fastest Growing Beauty Market The international cosmetics industry has experienced a rapid rise [...]
IASTEM - 789th International Conference On Medical, Biological And Pharmaceutical Sciences ICMBPS
2020-03-04 - 2020-03-05    
All Day
IASTEM - 789th International Conference on Medical, Biological and Pharmaceutical Sciences ICMBPS will be held on 4th - 5th March, 2020 at Hamburg, Germany . [...]
Global Drug Delivery And Formulation Summit 2020
2020-03-09 - 2020-03-11    
All Day
Innovative solutions to the greatest challenges in pharmaceutical development. Price: Full price delegate ticket: GBP 1495.0. Time: 9:00 am to 6:00 pm About Conference KC [...]
Inborn Errors Of Metabolism Drug Development Summit 2020
2020-03-10 - 2020-03-12    
All Day
Confidently Translate, Develop and Commercialize Gene, mRNA, Replacement Therapies, Small Molecule and Substrate Reduction Therapies to More Efficaciously Treat Inherited Metabolic Diseases. Time: 8:00 am [...]
Texting And E-Mail With Patients: Patient Requests And Complying With HIPAA
2020-03-12    
All Day
Overview:  This session will focus on the rights of individuals to communicate in the manner they desire, and how a medical office can decide what [...]
14 Mar
2020-03-14 - 2020-03-21    
All Day
Topics in Family Medicine, Hematology, and Oncology CME Cruise. Prices: USD 495.0 to USD 895.0. Speakers: David Parrish, MS, MD, FAAFP, Alexander E. Denes, MD, [...]
International Conference On Healthcare And Clinical Gerontology ICHCG
2020-03-14 - 2020-03-15    
All Day
An elegant and rich premier global platform for the International Conference on Healthcare and Clinical Gerontology ICHCG that uniquely describes the Academic research and development [...]
World Congress And Expo On Cell And Stem Cell Research
2020-03-16 - 2020-03-17    
All Day
"The world best platform for all the researchers to showcase their research work through OralPoster presentations in front of the international audience, provided with additional [...]
25th International Conference on  Diabetes, Endocrinology and Healthcare
2020-03-23 - 2020-03-24    
All Day
About Conference: Conference Series LLC Ltd is overwhelmed to announce the commencement of “25th International Conference on Diabetes, Endocrinology and Healthcare” to be held during [...]
ISN World Congress of Nephrology 2020
2020-03-26 - 2020-03-29    
All Day
ABOUT ISN WORLD CONGRESS OF NEPHROLOGY 2020 ISN World Congress of Nephrology (WCN) takes place annually to enable this premier educational event more available to [...]
30 Mar
2020-03-30 - 2020-03-31    
All Day
This Cardio Diabetes 2020 includes Speaker talks, Keynote & Poster presentations, Exhibition, Symposia, and Workshops. This International Conference will help in interacting and meeting with diabetes and [...]
Trending Topics In Internal Medicine 2020
2020-04-02 - 2020-04-04    
All Day
Trending Topics in Internal Medicine is a CME course that will tackle the latest information trending in healthcare today.   This course will help you discuss options [...]
2020 Summit On National & Global Cancer Health Disparities
2020-04-03 - 2020-04-04    
All Day
The 2020 Summit on National & Global Cancer Health Disparities is planned with the goal of creating a momentum to minimize the disparities in cancer [...]
Events on 2020-02-26
Events on 2020-03-02
Events on 2020-03-09
Events on 2020-03-10
Events on 2020-03-16
Events on 2020-03-26
Events on 2020-03-30
Events on 2020-04-02
Events on 2020-04-03
Articles

Machine learning tool identifies rare, undiagnosed immune disorders through patients’ electronic health records

In comparison to present techniques, researchers claim that a machine learning tool can uncover a large number of patients with uncommon, undetected diseases years early, potentially improving outcomes and lowering cost and morbidity. The results, authored by UCLA Health researchers, are detailed in Science Translational Medicine.

“People with uncommon illnesses might experience protracted postponements in identification and therapy, leading to needless examinations, escalating sickness, emotional strains, and monetary difficulties,” stated Manish Butte, MD, Ph.D., a pediatrician, human genetics, and microbiology/immunology professor at UCLA who treats these patients in his clinic.

Artificial intelligence techniques, such as machine learning, are finding their way into the medical field. By finding patterns in patients’ electronic health records that mimic those of individuals who are known to have the diseases, we were able to use these technologies to design a method to speed up the identification of undiagnosed patients.”

This study concentrated on a group of disorders collectively referred to as common variable immunodeficiency (CVID), which can be extremely rare, have symptoms that vary widely from person to person, and frequently go undiagnosed for years or decades after symptoms first appear.

Furthermore, over 60 genes have been linked to diseases thus far, and each individual’s problems are frequently caused by mutations in only one gene—but not the same gene from one manifestation of the disorder to another. There is no one causative mechanism, hence a clear diagnosis cannot be made using genetic testing.

One of the most prevalent inborn errors of immunity (IEI) in humans is CVID. IEIs are uncommon illnesses that make a person more vulnerable to infection, autoimmunity, and autoinflammation. There are currently about 500 known IEIs, and more are found every year. Estimated to impact 1 in 25,000 individuals, CVID is linked to impairments in both amount and function of antibodies, as well as compromised immunological responses.

Drawing on the term “phenotypes,” which refers to the observable characteristics or traits of a disease as seen in an individual, Butte and Bogdan Pasaniuc, Ph.D., a professor of computational medicine, human genetics, pathology, and laboratory medicine at UCLA David Geffen School of Medicine, led a team that developed a machine learning tool called PheNet. PheNet ranks patients according to their chance of having CVID by identifying phenotypic patterns from confirmed CVID cases.

There are numerous medical professions where uncommon immunological phenotypes, including CVID, have a clinical manifestation. For sinus infections, patients can be seen in ear, nose, and throat clinics. Pulmonology clinics may treat them for pneumonias. Long delays in diagnosis and treatment result from this fragmentation of care across multiple specialists, according to Butte, a co-senior author of the journal article alongside Pasaniuc.

Teaching immune deficits to all these busy doctors in the hopes that, even if they could identify which patients have an underlying immunological problem, they would still be too busy to refer those patients to us. We needed to locate these patients in a more effective manner.”

Our own patients say they had symptoms for years or even decades prior to being referred to our immunology clinic,” Butte continued. Numerous individuals may have received care years sooner and experienced better health outcomes if PheNet had been available. Countless patients could have received a diagnosis one to four years sooner than it did.

It is difficult to identify an electronic health record “signature” for CVID because the condition does not have a consistent clinical manifestation. In order to infer EHR signatures from patient records of patients known to have CVID and from patterns of illnesses documented in the literature, the researchers devised a computational approach.

Next, each patient receives a numerical score from the software that ranks the patients based on their likelihood of having CVID. Patients who scored highly—people the researchers refer to as “hiding in the medical system”—would be good candidates for referral to an immunology specialist.

According to Pasaniuc, the study team discovered that 74% of the top 100 patients ranked by the algorithm were likely to have CVID when they used PheNet to analyze data from millions of patient records from the UCLA electronic health record system. This was done after a blinded chart review. Butte and Pasaniuc have started implementing their AI in the actual world based on these initial results.

Initially, they validated PheNet using over 6 million patient records from several medical systems located in the University of California Data Warehouse and at Tennessee’s Vanderbilt Medical Center. Butte initiated a partnership with the immunology clinics at the University of California campuses in San Diego, Irvine, Davis, and San Francisco, wherein specialists would see the patients identified by the algorithm.

By speeding up the diagnosis of CVID, we demonstrate how artificial intelligence algorithms like PheNet may provide therapeutic benefits, and we anticipate that this will also apply to other uncommon diseases, according to Pasaniuc.

We are already seeing results from our deployment at all five of the University of California medical centers. As we extend to more diseases, we are currently refining our methodology to better detect CVID. To obtain even more details about patients and their conditions, we also intend to train the algorithm to read medical notes.

Lead author Ruth Johnson, Ph.D., a fellow at Harvard Medical School and a former member of the Pasaniuc Lab, said that tunnel vision—the condition in which different medical professionals see different parts of a disease but are unable to put the whole picture together—can be caused by limitations in the current health care system. This postpones diagnosis, particularly for the large number of CVID patients with variable multisystem symptoms. AI is capable of overcoming these challenges.

There is a rise in infections, antibiotic use, ER visits, hospital stays, and missed work and school days for each year that a diagnosis is postponed, according to the expert. The overall cost of failing to identify CVID in a timely manner is probably in the millions or billions of dollars, not to mention the emotional and financial toll it has on patients and their families.

Ruth Johnson (first author), Alexis V. Stephens, Rachel Mester, Sergey Knyazev, Lisa A. Kohn, Malika K. Freund, Leroy Bondhus, Brian L. Hill, Tommer Schwarz, Noah Zaitlen, and Valerie A. Arboleda are among the UCLA authors in addition to Butte and Pasaniuc. Contributing from Vanderbilt University’s Department of Biomedical Informatics was Lisa A. Bastarache.