Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
2
3
5
6
7
8
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
30
1
2
3
4
5
The 10th Annual Traumatic Brain Injury Conference
2020-06-01 - 2020-06-02    
All Day
Arrowhead Publishers is pleased to announce its 10th Annual Traumatic Brain Injury Conference will be coming back to Washington, DC on June 1-2, 2020. This conference brings [...]
5th World Congress On Public Health, Epidemiology & Nutrition
2020-06-01 - 2020-06-02    
All Day
We invite all the participants across the world to attend the “5th World Congress on Public Health, Epidemiology & Nutrition” during June 01-02, 2020; Sydney, [...]
Global Conference On Clinical Anesthesiology And Surgery
2020-06-04 - 2020-06-05    
All Day
Miami is an International city at Florida's southeastern tip. Its Cuban influence is reflected in the cafes and cigar shops that line Calle Ocho in [...]
5th International Conferences On Clinical And Counseling Psychology
2020-06-09 - 2020-06-10    
All Day
Conferenceseries LLC Ltd and its subsidiaries including iMedPub Ltd and Conference Series Organise 3000+ Conferences across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open [...]
50th International Conference On Nursing And Healthcare
2020-06-10 - 2020-06-11    
All Day
Conference short name: Nursing Conferences 2020 Full name : 50th International conference on Nursing and Healthcare Date : June 10-11, 2020 Place : Frankfurt, Germany [...]
Connected Claims USA Virtual
The insurance industry is built to help people when they are in need, and only the claims organization makes that possible. Now, the world faces [...]
Federles Master Tutorial On Abdominal Imaging
2020-06-29 - 2020-07-01    
All Day
The course is designed to provide the tools for participants to enhance abdominal imaging interpretation skills utilizing the latest imaging technologies. Time: 1:00 pm - [...]
IASTEM - 864th International Conference On Medical, Biological And Pharmaceutical Sciences ICMBPS
2020-07-01 - 2020-07-02    
All Day
IASTEM - 864th International Conference on Medical, Biological and Pharmaceutical Sciences ICMBPS will be held on 3rd - 4th July, 2020 at Hamburg, Germany . [...]
International Conference On Medical & Health Science
2020-07-02 - 2020-07-03    
All Day
ICMHS is being organized by Researchfora. The aim of the conference is to provide the platform for Students, Doctors, Researchers and Academicians to share the [...]
Mental Health, Addiction, And Legal Aspects Of End-Of-Life Care CME Cruise
2020-07-03 - 2020-07-10    
All Day
Mental Health, Addiction Medicine, and Legal Aspects of End-of-Life Care CME Cruise Conference. 7-Night Cruise to Alaska from Seattle, Washington on Celebrity Cruises Celebrity Solstice. [...]
ISER- 843rd International Conference On Science, Health And Medicine ICSHM
2020-07-03 - 2020-07-04    
All Day
ISER- 843rd International Conference on Science, Health and Medicine (ICSHM) is a prestigious event organized with a motivation to provide an excellent international platform for the academicians, [...]
04 Jul
2020-07-04    
12:00 am
ICRAMMHS is to bring together innovative academics and industrial experts in the field of Medical, Medicine and Health Sciences to a common forum. All the [...]
Events on 2020-06-04
Events on 2020-06-10
Events on 2020-06-23
Connected Claims USA Virtual
23 Jun 20
London
Events on 2020-06-29
Events on 2020-07-02
Latest News

Magnetized wire could be used to detect cancer in people

A magnetic wire used to snag scarce and hard-to-capture tumor cells could prove to be a swift and effective tactic for early cancer detection, according to a study by researchers at the Stanford University School of Medicine.

The wire, which is threaded into a vein, attracts special magnetic nanoparticles engineered to glom onto tumor cells that may be roaming the bloodstream if you have a tumor.

somewhere in your body. With these tumor cells essentially magnetized, the wire can lure the cells out of the free-flowing bloodstream using the same force that holds family photos to your refrigerator.

The technique, which has only been used in pigs so far, attracts from 10-80 times more tumor cells than current blood-based cancer-detection methods, making it a potent tool to catch the disease earlier. The technique could even help doctors evaluate a patient’s response to particular cancer treatments: If the therapy is working, tumor-cell levels in the blood should rise as the cells die and break away from the tumor, and then fall as the tumor shrinks.

For now, Sanjiv “Sam” Gambhir, MD, PhD, professor and chair of radiology and director of the Canary Center at Stanford for Cancer Early Detection, is focused on the wire as a cancer-detection method, but its reach could be much broader.

“It could be useful in any other disease in which there are cells or molecules of interest in the blood,” said Gambhir, who developed the wire with the help of his colleagues. “For example, let’s say you’re checking for a bacterial infection, circulating tumor DNA or rare cells that are responsible for inflammation — in any of these scenarios, the wire and nanoparticles help to enrich the signal, and therefore detect the disease or infection.”

The study was published online July 16 in Nature Biomedical Engineering. Gambhir is the senior author. Postdoctoral scholar Ophir Vermesh, MD, PhD; surgery resident Tianjia Jessie Ge, MD; and MD-PhD student Amin Aalipour share lead authorship.

No vial of blood necessary

Cells that have sloughed off the tumor and cruise the bloodstream freely, otherwise known as circulating tumor cells, can serve as cancer biomarkers, signaling the presence of the disease.

Why then, you might wonder, would you need an entirely new way to capture cells milling about the blood? Couldn’t a simple blood draw siphon off the same floating tumor cells? Hypothetically, yes, but circulating tumor cells are often scarce, and a blood draw only samples a few milliliters of the total blood volume, which in adult humans is about 5 liters.

These circulating tumor cells are so few that if you just take a regular blood sample, those test tubes likely won’t even have a single circulating tumor cell in them,” said Gambhir, the Virginia and D.K. Ludwig Professor of Clinical Investigation in Cancer Research. It would be like searching for a grain of sand in a bathtub, but only scooping out a few cups of water.

“So doctors end up saying ‘Okay, nothing’s there.’”

That, Gambhir said, is where he sees the magnetic wire making a difference. For the wire, which is about the length of your pinky finger and the thickness of a paperclip, to work, circulating tumor cells must be effectively magnetized with nanoparticles. The nanoparticles contain an antibody that latches onto circulating tumor cells. Once the floating tumor cell and nanoparticle are hitched, the cell lugs the tiny magnet around with it, and when the cell-magnet complex flows past the wire, it’s compelled by magnetic force to veer from its regular path in the bloodstream and stick to the wire. Then, the wire is removed from the vein, and the cells are stripped for analysis.

Gambhir and his team have yet to try out the wire in people, as they still have to file for approval from the Food and Drug Administration, but they have successfully tested it in pigs, placing the device in a vein near the pig’s ear. That vein is fairly similar to veins in the human arm. When compared with a 5-millileter blood sample, the magnetic wire extracted 10-80 times more cancerous cells; compared with a different, commercially available wire-based detection method, the wire picked up 500 to 5,000 more tumor cells.

“We estimate that it would take about 80 tubes of blood to match what the wire is able to sample in 20 minutes,” Gambhir said. Of course, he continued, it’s not practical to remove 80 test tubes of blood from one person; that’s more than a half-liter. “So, we’re hoping this approach will enrich our detection capability and give us better insight into just how rare these circulating tumor cells are, and how early on they exist once the cancer is present.”

A flexible wire

Gambhir said the technique could also be used to gather genetic information about tumors located in hard-to-biopsy places or to provide information about the efficacy of a cancer treatments. Perhaps most intriguingly, the magnetic wire may even stand to evolve into a treatment in and of itself.

“If we can get this thing to be really good at sucking up cancer cells, you might consider an application where you leave the wire in longer term,” Gambhir said. “That way it almost acts like a filter that grabs the cancer cells and prevents them from spreading to other parts of the body.

Now, Gambhir is working to ready the technique for humans, which involves approval for the nanoparticles. His lab is conducting toxicity studies in mice, paying close attention to what happens to leftover nanoparticles that don’t bind. So far, there are no signs of toxicity, and the extras decay over the course of a few weeks, he said. Gambhir is also looking into nanoparticles that are already FDA-approved, working to tweak them for use with the wire. Once approved for humans, the goal is to develop the technology into a multi-pronged tool that will boost detection, diagnosis, treatment and evaluation of cancer therapy.

The work is an example of Stanford Medicine’s focus on precision health, the goal of which is to anticipate and prevent disease in the healthy and precisely diagnose and treat disease in the ill.

The study’s other Stanford authors are veterinary research coordinator Yamil Saenz, DVM; former graduate students Chin Chun Ooi, PhD, and Yue Guo, PhD; radiology and molecular imaging scientist Israt Alam, PhD; senior research scientist Seung-min Park, PhD; graduate student Charlie Adelson; postdoctoral scholars Hamed Arami, PhD, and Yoshiaki Mitsutake, PhD; assistant professor of comparative medicine Jose Vilches-Moure, DVM, PhD; life science technician Elias Godoy; research scientist Michael Bachmann, MD, ScD; preclinical laboratory managing director Jennifer Lyons; instructor of radiology Kerstin Mueller, PhD; life science technician Alfredo Green; Shan Wang, PhD, professor of materials science and engineering and of electrical engineering; and chemistry professor Edward Solomon, PhD, who is also a professor of photon science at SLAC National Accelerator Laboratory.

 

Source