Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
29
30
31
1
2
3
4
5
6
7
8
9
11
12
13
16
17
18
19
21
23
24
25
26
27
29
30
31
1
The International Meeting for Simulation in Healthcare
2015-01-10 - 2015-01-14    
All Day
Registration is Open! Please join us on January 10-14, 2015 for our fifteenth annual IMSH at the Ernest N. Morial Convention Center in New Orleans, Louisiana. Over [...]
Finding Time for HIPAA Amid Deafening Administrative Noise
2015-01-14    
1:00 pm - 3:00 pm
January 14, 2015, Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Meaningful Use  Attestation, Audits and Appeals - A Legal Perspective
2015-01-15    
2:00 pm - 3:30 pm
Join Jim Tate, HITECH Answers  and attorney Matt R. Fisher for our first webinar event in the New Year.   Target audience for this webinar: [...]
iHT2 Health IT Summit
2015-01-20 - 2015-01-21    
All Day
iHT2 [eye-h-tee-squared]: 1. an awe-inspiring summit featuring some of the world.s best and brightest. 2. great food for thought that will leave you begging for more. 3. [...]
Chronic Care Management: How to Get Paid
2015-01-22    
1:00 pm - 2:00 pm
Under a new chronic care management program authorized by CMS and taking effect in 2015, you can bill for care that you are probably already [...]
Proper Management of Medicare/Medicaid Overpayments to Limit Risk of False Claims
2015-01-28    
1:00 pm - 3:00 pm
January 28, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9AM AKST | 8AM HAST Topics Covered: Identify [...]
Events on 2015-01-10
Events on 2015-01-20
iHT2 Health IT Summit
20 Jan 15
San Diego
Events on 2015-01-22
Latest News

MIT CSAIL machine learning tool could help nursing homes predict COVID-19

machine learning in healthcare

A unique remote monitoring system, developed at MIT and deployed in some hospitals and long-term care settings, is now showing further promise for advanced assessment of potential COVID-19 outbreaks in nursing homes and other congregate care communities, according to researchers at the school’s CSAIL institute.

WHY IT MATTERS
The technology, first developed to keep remote tabs on individuals who might have Parkinson’s or dementia, works by tracking vital signs such as heart-rate and breathing – all without any physical contact.

The system, known as RF-ReID – for “radio-frequency re-identification” – works by analyzing small changes in the wireless signal of an indoor environment, researchers say. Now, CSAIL scientists have published a new research report showing how the tool can also  identify specific patients that have been previously monitored, and distinguish among as many as 40 unique persons.

This could allow the technology to be a valuable means of continuous remote monitoring, said researchers, especially for people living together in group settings such as nursing homes. RF-ReID’s detection of heart rate and respiration patterns, for example, could help these providers monitor changes in vital signs, across the group and among individuals, to “detect outbreaks of infectious diseases like COVID-19.”

THE LARGER TREND
Professor Dina Katabi, director of the MIT Wireless Center, who has been the lead researcher on the technology for years, notes that, while there are other methods for tracking measurements from the same person over time – surveillance cameras, wearable devices – those approaches are impractical and don’t offer the same privacy guarantees as RF-ReID. That tool is able to re-identify people using a range of qualities it infers from radio signals: body size, walking speed, and even walking style. (Parkinson’s patients, for example, have a distinctive gait that tends to be much slower and more jolting.)

Lijie Fan and Tianhong Li, MIT graduate students who co-developed RF-ReID, say they plan to adapt the system to detect and track health problems among high risk populations. They developed the project alongside visiting scholar Rongyao Fang, master’s student Rumen Hristov and postdoctoral associate Yuan Yuan. The team used the system in 19 different retirement communities, and found that, after training it on more than 20 people, it could look at a new person and re-identify them after barely 10 seconds of physical activity.

ON THE RECORD
“The new invention allows us to identify measurements from the same person, but without collecting identifying private information about them, including their appearance,” said Prof. Katabi. As CSAIL researchers explain it: “RF-ReID essentially takes the collective pulse of the larger community so that it can monitor larger trends about community members’ day-to-day health. If the system notices that multiple (anonymized) individuals have had labored breathing or reduced heart-rates, it could alert care workers and encourage them to consider doing a round of COVID-19 tests.”