Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
27
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
19
21
22
23
24
25
26
27
28
29
30
CHIME College of Healthcare Information Management Executives
2014-10-28 - 2014-10-31    
All Day
The Premier Event for Healthcare CIOs Hotel Accomodations JW Marriott San Antonio Hill Country 23808 Resort Parkway San Antonio, Texas 78761 Telephone: 210-276-2500 Guest Fax: [...]
The Myth of the Paperless EMR
2014-10-29    
2:00 pm - 3:00 pm
Is Paper Eluding Your Current Technologies; The Myth of the Paperless EMR Please join Intellect Resources as we present Is Paper Eluding Your Current Technologies; The Myth [...]
The New York eHealth Collaborative Digital Health Conference
2014-11-17    
All Day
 Showcasing Innovation Join a dynamic community of innovators and thought leaders who are shaping the future of healthcare through technology. The New York eHealth Collaborative [...]
Big Data Healthcare Analytics Forum
2014-11-20    
All Day
The Big Data & Healthcare Analytics Forum Cuts Through the Hype When it comes to big data, the healthcare industry is flooded with hype and [...]
Events on 2014-10-28
Events on 2014-10-29
Events on 2014-11-17
Events on 2014-11-20
Latest News

Mount Sinai Develops AI Technology to Improve Detection of Rare Diseases

Mount Sinai researchers intend to share InfEHR’s code with other institutions to support further exploration of its potential in personalized treatment and research.

Researchers at the Icahn School of Medicine at Mount Sinai in New York City have developed an artificial intelligence system aimed at enhancing diagnostic accuracy by linking previously unconnected medical events over time.

The system, called Inference on Electronic Health Records (InfEHR), analyzes fragmented data within electronic health records (EHRs) to detect hidden patterns that may signal underlying diseases, according to an October 15 press release from the health system. InfEHR was created by Mount Sinai’s Windreich Department of Artificial Intelligence and Human Health, in collaboration with partner institutions.

In a study published on September 26 in Nature Communications, InfEHR examined deidentified patient data from Mount Sinai and UC Irvine hospitals. The AI system identified neonatal sepsis with 12 to 16 times greater accuracy and postoperative kidney injury with 4 to 7 times greater accuracy compared to existing diagnostic approaches.

Mount Sinai researchers plan to release InfEHR’s code to other institutions to encourage further research and development in personalized medicine and treatment.