Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
31
1
12:00 AM - TEDMED 2017
2
3
5
6
7
8
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
30
1
2
3
TEDMED 2017
2017-11-01 - 2017-11-03    
All Day
A healthy society is everyone’s business. That’s why TEDMED speakers are thought leaders and accomplished individuals from every sector of society, both inside and outside [...]
AMIA 2017 Annual Symposium
2017-11-04 - 2017-11-08    
All Day
Call for Participation We invite you to contribute your best work for presentation at the AMIA Annual Symposium – the foremost symposium for the science [...]
Beverly Hills Health IT Summit
2017-11-09 - 2017-11-10    
All Day
About Health IT Summits U.S. healthcare is at an inflection point right now, as policy mandates and internal healthcare system reform begin to take hold, [...]
Forbes Healthcare Summit
2017-11-29 - 2017-11-30    
All Day
ForbesLive leverages unique access to the world’s most influential leaders, policy-makers, entrepreneurs, and artists—uniting these global forces to harness their collective knowledge, address today’s critical [...]
Events on 2017-11-01
TEDMED 2017
1 Nov 17
La Quinta
Events on 2017-11-04
AMIA 2017 Annual Symposium
4 Nov 17
WASHINGTON
Events on 2017-11-09
Beverly Hills Health IT Summit
9 Nov 17
Los Angeles
Events on 2017-11-29
Forbes Healthcare Summit
29 Nov 17
New York
Latest News

Mount Sinai Develops AI Technology to Improve Detection of Rare Diseases

Mount Sinai researchers intend to share InfEHR’s code with other institutions to support further exploration of its potential in personalized treatment and research.

Researchers at the Icahn School of Medicine at Mount Sinai in New York City have developed an artificial intelligence system aimed at enhancing diagnostic accuracy by linking previously unconnected medical events over time.

The system, called Inference on Electronic Health Records (InfEHR), analyzes fragmented data within electronic health records (EHRs) to detect hidden patterns that may signal underlying diseases, according to an October 15 press release from the health system. InfEHR was created by Mount Sinai’s Windreich Department of Artificial Intelligence and Human Health, in collaboration with partner institutions.

In a study published on September 26 in Nature Communications, InfEHR examined deidentified patient data from Mount Sinai and UC Irvine hospitals. The AI system identified neonatal sepsis with 12 to 16 times greater accuracy and postoperative kidney injury with 4 to 7 times greater accuracy compared to existing diagnostic approaches.

Mount Sinai researchers plan to release InfEHR’s code to other institutions to encourage further research and development in personalized medicine and treatment.