Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
5
6
8
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
Forbes Healthcare Summit
2014-12-03    
All Day
Forbes Healthcare Summit: Smart Data Transforming Lives How big will the data get? This year we may collect more data about the human body than [...]
Customer Analytics & Engagement in Health Insurance
2014-12-04 - 2014-12-05    
All Day
Using Data Analytics, Product Experience & Innovation to Build a Profitable Customer-Centric Strategy Takeaway business ROI: Drive business value with customer analytics: learn what every business [...]
mHealth Summit
DECEMBER 7-11, 2014 The mHealth Summit, the largest event of its kind, convenes a diverse international delegation to explore the limits of mobile and connected [...]
The 26th Annual IHI National Forum
Overview ​2014 marks the 26th anniversary of an event that has shaped the course of health care quality in profound, enduring ways — the Annual [...]
Why A Risk Assessment is NOT Enough
2014-12-09    
2:00 pm - 3:30 pm
A common misconception is that  “A risk assessment makes me HIPAA compliant” Sadly this thought can cost your practice more than taking no action at [...]
iHT2 Health IT Summit
2014-12-10 - 2014-12-11    
All Day
Each year, the Institute hosts a series of events & programs which promote improvements in the quality, safety, and efficiency of health care through information technology [...]
Design a premium health insurance plan that engages customers, retains subscribers and understands behaviors
2014-12-16    
11:30 am - 12:30 pm
Wed, Dec 17, 2014 1:00 AM - 2:00 AM IST Join our webinar with John Mills - UPMC, Tim Gilchrist - Columbia University HITLAP, and [...]
Events on 2014-12-03
Forbes Healthcare Summit
3 Dec 14
New York City
Events on 2014-12-04
Events on 2014-12-07
mHealth Summit
7 Dec 14
Washington
Events on 2014-12-09
Events on 2014-12-10
iHT2 Health IT Summit
10 Dec 14
Houston
Press Releases

New Computational Model by CHOP Researchers Identifies Noncoding Mutations Across Five Pediatric Cancers

CHOP

New Computational Model by CHOP Researchers Identifies Noncoding Mutations Across Five Pediatric Cancers

Researchers at Children’s Hospital of Philadelphia (CHOP) have developed a new computational algorithm that has, for the first time, identified a spectrum of mutations in the noncoding portion of the human genome across five major pediatric cancers. The study, which was published today in Science Advances, used the algorithm to analyze more than 500 pediatric cancer patients’ mutations and gene expression profiles to develop a comprehensive list of potentially cancer-causing mutations.

“Noncoding mutations are very important because the noncoding portion of the genome typically regulates how genes are turned on and off, much like a control switch, which has implications for the uncontrolled growth that occurs in cancer,” said Kai Tan, PhD, Professor of Pediatrics at CHOP and senior author of the study. “However, these regions are also challenging to study, and our knowledge about them not as developed as that of coding regions. Our computational model has identified a set of targets in pediatric cancers that we hope to study further and eventually move to clinical practice.”

The researchers developed a computation tool called PANGEA (predictive analysis of noncoding genomic enhancer/promoter alterations) to analyze noncoding mutations and their impact on gene expression in more than 500 pediatric cancer patients who had five major types of pediatric cancer: B cell acute lymphoblastic leukemia (B-ALL), acute myeloid leukemia (AML), neuroblastoma, Wilms tumor, and osteosarcoma. PANGEA identified all types of mutations that are associated with gene expression changes, including single nucleotide variants, small indels, copy number variations, and structural variants.

Previous studies on noncoding mutations have focused on single nucleotide variants and small indels, which are insertions or deletions of bases in the genome that are relatively short in length. However, structural variants are regions of DNA much larger in size – 1 kilobase or larger – a quality that makes them more difficult to identify but also more likely to contribute to changes in gene regulation that lead to cancer.

Using PANGEA, the researchers found that structural variants are indeed the most frequent cause of potentially cancer-causing mutations and identified 1,137 structural variants that affect the expression of more than 2,000 genes across the five pediatric cancer types.

In analyzing the data, the researchers found that coding and noncoding mutations affect distinct sets of genes and pathways, which is likely due to the different genomic locations of these two types of genes. The researchers found that genes involved in metabolism – the rewiring of which is a hallmark of cancer – are more frequently affected by noncoding mutations. However, it is unclear to what degree noncoding mutations facilitate metabolism rewiring in the five cancer types the researchers studied.

“Our results highlight the need for comparative analysis of both coding and noncoding mutations, which might reveal novel cancer-related genes and pathways,” said Tan. “Identifying putative mutations is a starting point that will facilitate experimental work to validates these predictions.”

This work was supported by grants from the National Institutes of Health, including the National Cancer Institute and the National Institute of General Medical Sciences.

About Children’s Hospital of Philadelphia

Children’s Hospital of Philadelphia was founded in 1855 as the nation’s first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children’s Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 564-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Source