Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
29
30
31
1
2
5
7
8
12
13
14
16
17
21
22
23
24
25
26
27
28
1
Proper Management of Medicare/Medicaid Overpayments to Limit Risk of False Claims
2015-01-28    
1:00 pm - 3:00 pm
January 28, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9AM AKST | 8AM HAST Topics Covered: Identify [...]
EhealthInitiative Annual Conference 2015
2015-02-03 - 2015-02-05    
All Day
About the Annual Conference Interoperability: Building Consensus Through the 2020 Roadmap eHealth Initiative’s 2015 Annual Conference & Member Meetings, February 3-5 in Washington, DC will [...]
Real or Imaginary -- Manipulation of digital medical records
2015-02-04    
1:00 pm - 3:00 pm
February 04, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Orlando Regional Conference
2015-02-06    
All Day
February 06, 2015 Lake Buena Vista, FL Topics Covered: Hot Topics in Compliance Compliance and Quality of Care Readying the Compliance Department for ICD-10 Compliance [...]
Patient Engagement Summit
2015-02-09 - 2015-02-10    
12:00 am
THE “BLOCKBUSTER DRUG OF THE 21ST CENTURY” Patient engagement is one of the hottest topics in healthcare today.  Many industry stakeholders consider patient engagement, as [...]
iHT2 Health IT Summit in Miami
2015-02-10 - 2015-02-11    
All Day
February 10-11, 2015 iHT2 [eye-h-tee-squared]: 1. an awe-inspiring summit featuring some of the world.s best and brightest. 2. great food for thought that will leave you begging [...]
Starting Urgent Care Business with Confidence
2015-02-11    
1:00 pm - 3:00 pm
February 11, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Managed Care Compliance Conference
2015-02-15 - 2015-02-18    
All Day
February 15, 2015 - February 18, 2015 Las Vegas, NV Prospectus Learn essential information for those involved with the management of compliance at health plans. [...]
Healthcare Systems Process Improvement Conference 2015
2015-02-18 - 2015-02-20    
All Day
BE A PART OF THE 2015 CONFERENCE! The Healthcare Systems Process Improvement Conference 2015 is your source for the latest in operational and quality improvement tools, methods [...]
A Practical Guide to Using Encryption for Reducing HIPAA Data Breach Risk
2015-02-18    
1:00 pm - 3:00 pm
February 18, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Compliance Strategies to Protect your Revenue in a Changing Regulatory Environment
2015-02-19    
1:00 pm - 3:30 pm
February 19, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Dallas Regional Conference
2015-02-20    
All Day
February 20, 2015 Grapevine, TX Topics Covered: An Update on Government Enforcement Actions from the OIG OIG and US Attorney’s Office ICD 10 HIPAA – [...]
Events on 2015-02-03
EhealthInitiative Annual Conference 2015
3 Feb 15
2500 Calvert Street
Events on 2015-02-06
Orlando Regional Conference
6 Feb 15
Lake Buena Vista
Events on 2015-02-09
Events on 2015-02-10
Events on 2015-02-11
Events on 2015-02-15
Events on 2015-02-20
Dallas Regional Conference
20 Feb 15
Grapevine
Latest News

NLP model accelerates patient message handling in EHR systems

nlp_model-EMR industry

1. Anderson and colleagues compared clinical staff response times to patient messages with NLP labeling versus without NLP.
2. NLP shortened the time required to respond to new patient messages and to complete patient conversations.

Evidence Rating: Level 2 (Good)

Study Summary:
Patients are increasingly using EHR messaging portals for care, but messages often get routed manually through a central pool before reaching the right staff, causing delays. To address this, Anderson and colleagues developed an NLP model to categorize incoming messages into common themes, aiming to speed up response times. The model was trained on 40,000 EHR messages and sorted messages into five categories: urgent, clinician, refill, schedule, or form. After deployment in a clinical setting, the response times of NLP-routed messages were compared to a similar group of manually routed messages. Key measures included time to first staff interaction, time to complete the conversation, and total messages exchanged. Results showed that NLP-routed messages reached healthcare staff faster and conversations were completed more quickly. The NLP system also consistently categorized messages accurately. This study demonstrates that integrating an NLP classifier within EHRs can improve response times and reduce the messaging workload for healthcare staff.

In-Depth \[Prospective Cohort]:
The NLP model was developed using a dataset of 40,000 EHR messages from adult patients, with each message annotated by a clinician into one of five categories: urgent, clinician, refill, schedule, or form. After development, the model was implemented across four outpatient sites. The intervention group had messages automatically routed by the NLP, while the control group consisted of a parallel set of unrouted messages. Both groups’ messages were collected from the same sites during the same two-week period, following identical inclusion and exclusion criteria.

Primary outcomes compared were the time from message initiation to first healthcare staff interaction (including reads, forwards, or replies), time from initiation to conversation completion, and the total number of message interactions by staff. Secondary outcomes assessed the NLP’s precision, recall, and accuracy in labeling messages.

Results showed that the intervention group experienced a median 1-hour faster initial response time (95% CI: −1.42 to −0.5 hours) and a 22.5-hour shorter median time to complete conversations (95% CI: −36.3 to −17.7 hours). Staff in the NLP-routed group also handled fewer total message interactions, with a median reduction of 2 interactions (95% CI: −2.9 to −1.4). The NLP demonstrated precision, recall, and accuracy rates exceeding 95% across all five categories.

Overall, this study confirmed that using an NLP classifier within the EHR can improve operational efficiency and reduce administrative workload for healthcare teams.