Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
31
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
27
28
29
1
2
3
4
Converge where Healthcare meets Innovation
2015-09-02 - 2015-09-03    
All Day
MedCity CONVERGE provides the most accurate picture of the future of medical innovation by gathering decision-makers from every sector to debate the challenges and opportunities [...]
11th Global Summit and Expo on Food & Beverages
2015-09-22 - 2015-09-24    
All Day
Event Date: September 22-24, 2016 Event Venue: Embassy Suites, Las Vegas, Nevada, USA Theme: Accentuate Innovations and Emerging Novel Research in Food and Beverage Sector [...]
2015 AHIMA Convention and Exhibit
2015-09-26 - 2015-09-30    
All Day
The Affordable Care Act, Meaningful Use, HIPAA, and of course, ICD-10 are changing healthcare. Central to healthcare today is health information. It is used throughout [...]
Transforming Medicine: Evidence-Driven mHealth
2015-09-30 - 2015-10-02    
8:00 am - 5:00 pm
September 30-October 2, 2015Digital Medicine 2015 Save the Date (PDF, 1.23 MB) Download the Scripps CME app to your smart phone and/or tablet for the conference [...]
Health 2.0 9th Annual Fall Conference
2015-10-04 - 2015-10-07    
All Day
October 4th - 7th, 2015 Join us for our 9th Annual Fall Conference, October 4-7th. Set over 3 1/2 days, the 9th Annual Fall Conference will [...]
Events on 2015-09-02
Events on 2015-09-22
Events on 2015-09-26
Events on 2015-09-30
Events on 2015-10-04
Latest News

NLP model accelerates patient message handling in EHR systems

nlp_model-EMR industry

1. Anderson and colleagues compared clinical staff response times to patient messages with NLP labeling versus without NLP.
2. NLP shortened the time required to respond to new patient messages and to complete patient conversations.

Evidence Rating: Level 2 (Good)

Study Summary:
Patients are increasingly using EHR messaging portals for care, but messages often get routed manually through a central pool before reaching the right staff, causing delays. To address this, Anderson and colleagues developed an NLP model to categorize incoming messages into common themes, aiming to speed up response times. The model was trained on 40,000 EHR messages and sorted messages into five categories: urgent, clinician, refill, schedule, or form. After deployment in a clinical setting, the response times of NLP-routed messages were compared to a similar group of manually routed messages. Key measures included time to first staff interaction, time to complete the conversation, and total messages exchanged. Results showed that NLP-routed messages reached healthcare staff faster and conversations were completed more quickly. The NLP system also consistently categorized messages accurately. This study demonstrates that integrating an NLP classifier within EHRs can improve response times and reduce the messaging workload for healthcare staff.

In-Depth \[Prospective Cohort]:
The NLP model was developed using a dataset of 40,000 EHR messages from adult patients, with each message annotated by a clinician into one of five categories: urgent, clinician, refill, schedule, or form. After development, the model was implemented across four outpatient sites. The intervention group had messages automatically routed by the NLP, while the control group consisted of a parallel set of unrouted messages. Both groups’ messages were collected from the same sites during the same two-week period, following identical inclusion and exclusion criteria.

Primary outcomes compared were the time from message initiation to first healthcare staff interaction (including reads, forwards, or replies), time from initiation to conversation completion, and the total number of message interactions by staff. Secondary outcomes assessed the NLP’s precision, recall, and accuracy in labeling messages.

Results showed that the intervention group experienced a median 1-hour faster initial response time (95% CI: −1.42 to −0.5 hours) and a 22.5-hour shorter median time to complete conversations (95% CI: −36.3 to −17.7 hours). Staff in the NLP-routed group also handled fewer total message interactions, with a median reduction of 2 interactions (95% CI: −2.9 to −1.4). The NLP demonstrated precision, recall, and accuracy rates exceeding 95% across all five categories.

Overall, this study confirmed that using an NLP classifier within the EHR can improve operational efficiency and reduce administrative workload for healthcare teams.