Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
14
15
16
17
18
19
20
21
23
24
25
26
28
29
San Jose Health IT Summit
2017-04-13 - 2017-04-14    
All Day
About Health IT Summits U.S. healthcare is at an inflection point right now, as policy mandates and internal healthcare system reform begin to take hold, [...]
Annual IHI Summit
2017-04-20 - 2017-04-22    
All Day
The Office Practice & Community Improvement Conference ​​​​​​The 18th Annual Summit on Improving Patient Care in the Office Practice and the Community taking place April 20–22, 2017, in Orlando, FL, brings together 1,000 health improvers from around the globe, in [...]
Stanford Medicine X | ED
2017-04-22 - 2017-04-23    
All Day
Stanford Medicine X | ED is a conference on the future of medical education at the intersections of people, technology and design. As an Everyone [...]
2017 Health Datapalooza
2017-04-27 - 2017-04-28    
All Day
Health Datapalooza brings together a diverse audience of over 1,600 people from the public and private sectors to learn how health and health care can [...]
The 14th Annual World Health Care Congress
2017-04-30 - 2017-05-03    
All Day
The 14th Annual World Health Care Congress April 30 - May 3, 2017 • Washington, DC • The Marriott Wardman Park Hotel Connecting and Preparing [...]
Events on 2017-04-13
San Jose Health IT Summit
13 Apr 17
San Jose
Events on 2017-04-20
Annual IHI Summit
20 Apr 17
Orlando
Events on 2017-04-22
Events on 2017-04-27
2017 Health Datapalooza
27 Apr 17
Washington, D.C
Events on 2017-04-30
Latest News

Radiation doses from CT scans should be more consistent, say experts

Chemo-brain
Large variation in doses mainly due to how scanners are used by medical staff

Large differences in radiation doses used for CT scans are mainly due to how the scanners are used by medical staff rather than differences in the patients scanned or the machines used, finds a study in The BMJ today.

Setting more consistent dose standards should therefore be possible and will ensure that patients are not exposed to unnecessary radiation risks.

Computed tomography (CT) scanning creates detailed pictures of areas inside the body to help diagnose a range of conditions. But CT radiation is associated with an increased risk of cancer, so it is important to minimise exposure and reduce unnecessary variation.

In fact, evidence suggests that CT radiation doses are highly variable across patients, institutions, and countries and, in many cases, doses can be reduced by 50% or more without reducing image quality and diagnostic accuracy.

To better understand the factors contributing to this variation, an international research team analysed dose data for over 2 million CT scans from 151 institutions, across seven countries.

They included scans of the abdomen, chest, combined chest and abdomen, and head from 1.7 million adults between November 2015 and August 2017.

They adjusted the data for a range of variables related to the patient (e.g. sex and size), institution (e.g. trauma centre, academic or private), and machine (e.g. manufacturer and model).

The researchers found that most of these factors had only a small effect on dose variation across countries.

For example, after adjusting for patient characteristics, there was still a fourfold range in mean effective dose for abdominal scans and a 17-fold range in proportion of high dose scans (4-69%). Similar variation persisted for chest scans, and combined chest and abdomen scans.

Adjusting for institution and machine factors also had little effect on dose variation.

However, adjusting for technical factors (how scanners were used by medical staff) substantially reduced or eliminated nearly all the dose variation across countries.

As such, the researchers conclude that the variation in doses used for CT scanning of patients is primarily driven by how CT scanners are used, rather than to underlying differences in the patients scanned or the machines used.

This is an observational study, and as such, can’t establish cause, and the researchers point to some limitations that may have influenced the results.

Nevertheless, they say these findings suggest that optimising doses to a consistent standard should be possible. And they call for more education and international collaboration to set benchmarks for optimum target doses.

Source