Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
29
30
1
2
3
4
5
7
8
10
11
12
13
14
15
16
17
18
20
22
23
24
25
26
27
28
29
30
31
1
C.D. Howe Institute Roundtable Luncheon
2014-04-28    
12:00 pm - 1:30 pm
Navigating the Healthcare System: The Patient’s Perspective Please join us for this Roundtable Luncheon at the C.D. Howe Institute with Richard Alvarez, Chief Executive Officer, [...]
DoD / VA EHR and HIT Summit
DSI announces the 6th iteration of our DoD/VA iEHR & HIE Summit, now titled “DoD/VA EHR & HIT Summit”. This slight change in title is to help [...]
Electronic Medical Records: A Conversation
2014-05-09    
1:00 pm - 3:30 pm
WID, the Holtz Center for Science & Technology Studies and the UW–Madison Office of University Relations are offering a free public dialogue exploring electronic medical records (EMRs), a rapidly disseminating technology [...]
The National Conference on Managing Electronic Records (MER) - 2014
2014-05-19    
All Day
" OUTSTANDING QUALITY – Every year, for over 10 years, 98% of the MER’s attendees said they would recommend the MER! RENOWNED SPEAKERS – delivering timely, accurate information as well as an abundance of practical ideas. 27 SESSIONS AND 11 TOPIC-FOCUSED THEMES – addressing your organization’s needs. FULL RANGE OF TOPICS – with sessions focusing on “getting started”, “how to”, and “cutting-edge”, to “thought leadership”. INCISIVE CASE STUDIES – from those responsible for significant implementations and integrations, learn how they overcame problems and achieved success. GREAT NETWORKING – by interacting with peer professionals, renowned authorities, and leading solution providers, you can fast-track solving your organization’s problems. 22 PREMIER EXHIBITORS – in productive 1:1 private meetings, learn how the MER 2014 exhibitors are able to address your organization’s problems. "
Chicago 2014 National Conference for Medical Office Professionals
2014-05-21    
12:00 am
3 Full Days of Training Focused on Optimizing Medical Office Staff Productivity, Profitability and Compliance at the Sheraton Chicago Hotel & Towers Featuring Keynote Presentation [...]
Events on 2014-04-28
Events on 2014-05-06
DoD / VA EHR and HIT Summit
6 May 14
Alexandria
Events on 2014-05-09
Latest News

Reinforcement learning enhances AI in cybersecurity

AI algorithms and machine learning efficiently handle large volumes of data swiftly, aiding network defenders in sifting through numerous alerts to differentiate potential threats from false positives. Reinforcement learning plays a crucial role in the benefits AI offers to cybersecurity, mimicking human learning through experience and trial and error.

Reinforcement learning diverges from supervised learning by concentrating on agents learning from their own actions and feedback within a given environment. This concept revolves around maximizing learning capabilities over time by utilizing rewards and punishments, thereby enhancing future decision-making.

Application of Reinforcement Learning: The escalation of alert fatigue among Security Operations Center (SOC) analysts has emerged as a significant concern for Chief Information Security Officers, given the risk of burnout and high turnover rates. Solutions capable of filtering alert noise, enabling analysts to prioritize genuine threats, can save organizations valuable time and resources.

AI technologies play a pivotal role in combating large-scale social engineering, phishing, and spam campaigns by preemptively understanding and identifying attack kill chains. Given resource constraints, reinforcement learning proves advantageous in identifying sophisticated dynamic attacks by analyzing patterns from past failed and successful attempts.

Expanding beyond detection, reinforcement learning holds promise in predictive cybersecurity, leveraging past experiences and patterns to anticipate future threats. This proactive approach enhances cybersecurity by optimizing resource allocation, coordinating with existing systems, and deploying countermeasures effectively.

Challenges of Reinforcement Learning: The proliferation of networked devices poses a challenge for reinforcement learning in cybersecurity, compounded by remote work and personal device usage. Nonetheless, integrating reinforcement learning with the zero-trust approach can fortify IT security.

Access to adequate data presents another obstacle, particularly during the initial stages when limited data availability may distort learning cycles or prompt flawed defensive actions. Adversaries may exploit these limitations by manipulating data to deceive learning algorithms, emphasizing the need for careful integration of reinforcement learning in cybersecurity technologies.