Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
25
27
28
29
1
3
5
6
7
8
11
13
15
17
18
19
20
21
22
24
25
27
28
29
31
1
2
3
4
5
3rd International conference on  Diabetes, Hypertension and Metabolic Syndrome
2020-02-24 - 2020-02-25    
All Day
About Diabetes Meet 2020 Conference Series takes the immense Pleasure to invite participants from all over the world to attend the 3rdInternational conference on Diabetes, Hypertension and [...]
3rd International Conference on Cardiology and Heart Diseases
2020-02-24 - 2020-02-25    
All Day
ABOUT 3RD INTERNATIONAL CONFERENCE ON CARDIOLOGY AND HEART DISEASES The standard goal of Cardiology 2020 is to move the cardiology results and improvements and to [...]
Medical Device Development Expo OSAKA
2020-02-26 - 2020-02-28    
All Day
ABOUT MEDICAL DEVICE DEVELOPMENT EXPO OSAKA What is Medical Device Development Expo OSAKA (MEDIX OSAKA)? Gathers All Kinds of Technologies for Medical Device Development! This [...]
Beauty Care Asia Pacific Summit 2020 (BCAP)
2020-03-02 - 2020-03-04    
All Day
Groundbreaking Event to Address Asia-Pacific’s Growing Beauty Sector—Your Window to the World’s Fastest Growing Beauty Market The international cosmetics industry has experienced a rapid rise [...]
IASTEM - 789th International Conference On Medical, Biological And Pharmaceutical Sciences ICMBPS
2020-03-04 - 2020-03-05    
All Day
IASTEM - 789th International Conference on Medical, Biological and Pharmaceutical Sciences ICMBPS will be held on 4th - 5th March, 2020 at Hamburg, Germany . [...]
Global Drug Delivery And Formulation Summit 2020
2020-03-09 - 2020-03-11    
All Day
Innovative solutions to the greatest challenges in pharmaceutical development. Price: Full price delegate ticket: GBP 1495.0. Time: 9:00 am to 6:00 pm About Conference KC [...]
Inborn Errors Of Metabolism Drug Development Summit 2020
2020-03-10 - 2020-03-12    
All Day
Confidently Translate, Develop and Commercialize Gene, mRNA, Replacement Therapies, Small Molecule and Substrate Reduction Therapies to More Efficaciously Treat Inherited Metabolic Diseases. Time: 8:00 am [...]
Texting And E-Mail With Patients: Patient Requests And Complying With HIPAA
2020-03-12    
All Day
Overview:  This session will focus on the rights of individuals to communicate in the manner they desire, and how a medical office can decide what [...]
14 Mar
2020-03-14 - 2020-03-21    
All Day
Topics in Family Medicine, Hematology, and Oncology CME Cruise. Prices: USD 495.0 to USD 895.0. Speakers: David Parrish, MS, MD, FAAFP, Alexander E. Denes, MD, [...]
International Conference On Healthcare And Clinical Gerontology ICHCG
2020-03-14 - 2020-03-15    
All Day
An elegant and rich premier global platform for the International Conference on Healthcare and Clinical Gerontology ICHCG that uniquely describes the Academic research and development [...]
World Congress And Expo On Cell And Stem Cell Research
2020-03-16 - 2020-03-17    
All Day
"The world best platform for all the researchers to showcase their research work through OralPoster presentations in front of the international audience, provided with additional [...]
25th International Conference on  Diabetes, Endocrinology and Healthcare
2020-03-23 - 2020-03-24    
All Day
About Conference: Conference Series LLC Ltd is overwhelmed to announce the commencement of “25th International Conference on Diabetes, Endocrinology and Healthcare” to be held during [...]
ISN World Congress of Nephrology 2020
2020-03-26 - 2020-03-29    
All Day
ABOUT ISN WORLD CONGRESS OF NEPHROLOGY 2020 ISN World Congress of Nephrology (WCN) takes place annually to enable this premier educational event more available to [...]
30 Mar
2020-03-30 - 2020-03-31    
All Day
This Cardio Diabetes 2020 includes Speaker talks, Keynote & Poster presentations, Exhibition, Symposia, and Workshops. This International Conference will help in interacting and meeting with diabetes and [...]
Trending Topics In Internal Medicine 2020
2020-04-02 - 2020-04-04    
All Day
Trending Topics in Internal Medicine is a CME course that will tackle the latest information trending in healthcare today.   This course will help you discuss options [...]
2020 Summit On National & Global Cancer Health Disparities
2020-04-03 - 2020-04-04    
All Day
The 2020 Summit on National & Global Cancer Health Disparities is planned with the goal of creating a momentum to minimize the disparities in cancer [...]
Events on 2020-02-26
Events on 2020-03-02
Events on 2020-03-09
Events on 2020-03-10
Events on 2020-03-16
Events on 2020-03-26
Events on 2020-03-30
Events on 2020-04-02
Events on 2020-04-03
Latest News

Scientists engineer way to prevent immune response to gene therapy in mice

Stanford University School of Medicine researchers have demonstrated that gene therapy can be effective without causing a dangerous side effect common to all gene therapy: an autoimmune reaction to the normal protein, which the patient’s immune system is encountering for the first time.

The researchers showed this in a mouse model that accurately recapitulates Duchenne  muscular dystrophy. One in every 5,000 boys is born with this crippling disease, which leaves patients wheelchair-bound by mid-adolescence and is typically fatal by young adulthood. It stems from a genetic defect that deprives skeletal and cardiac muscles of a working version of a protein called dystrophin.

“Gene therapy is on the cusp of becoming a mainstream approach for treating single-gene disorders,” said Lawrence Steinman, MD, professor of neurology and neurological sciences and of pediatrics at Stanford. “But there’s a catch: If you give a gene that’s a recipe for a normal protein to someone with a faulty version of the gene, whose body never made the normal protein before, that person’s immune system will mount a reaction — in some cases, a lethal one — to the normal protein, just as it would to any foreign protein. We think we’ve solved that problem.”

The findings are described in a study published online Sept. 3 in the Proceedings of the National Academy of Sciences. Steinman, who holds the George A. Zimmermann Professorship, is the study’s senior author. The lead author is senior research scientist Peggy Ho, PhD.

Going viral

Duchenne muscular dystrophy is the result of a single defective gene, making it an excellent candidate for gene therapy in which a patient’s faulty gene is replaced with the correct version. One way to do this is by co-opting viruses, which are simple entities that are adept at infecting cells and then forcing every invaded cell’s reproductive machinery to copy their own viral genes. For gene therapy, viruses are modified by ridding them of unwanted genes, retaining the ones necessary for infectivity and adding the therapeutic gene to be delivered to a patient.

The gene encoding dystrophin is far too big for a gene-hauling virus to take onboard.  Fortunately, a mere fraction of the entire gene is enough to generate a reasonably functional version of dystrophin, called microdystrophin. The abridged gene fits snugly into a viral delivery vehicle designed some time ago by Jeffrey Chamberlain, PhD, a co-author of the study and a professor of neurology, medicine and biochemistry at the University of Washington.

Inducing tolerance

But there’s still that sticky autoimmunity problem. To get around it, Steinman and his colleagues spliced the gene for microdystrophin into a different kind of delivery vehicle called a plasmid.

Plasmids are tiny rings of DNA that bacteria often trade back and forth to disseminate important traits, such as drug resistance, among one another. The particular bacterial plasmid the investigators co-opted ordinarily contains several short DNA sequences, or motifs, that the immune system recognizes as suspicious and to which it mounts a strong response.

But some years ago, Steinman and a few other Stanford scientists — including Ho and study co-author William Robinson, MD, PhD, professor of immunology and rheumatology — figured out how to replace those troublesome DNA motifs with another set of DNA sequences that, far from exacerbating the immune response, subdue it. This immune-tolerance-inducing plasmid has been deployed in clinical trials for two different autoimmune conditions, with promising results.

For the new study, the researchers used a one-two punch to deliver gene therapy and protection against autoimmunity to the mice: viral delivery of the microdystrophin gene, followed by the plasmid-assisted induction of tolerance to microdystrophin.

ifteen 6-week-old mice — an age roughly equivalent to that of a young child —bioengineered to lack functioning dystrophin were injected with the virus carrying microdystrophin. Starting a week later, they were divided into three groups and given weekly injections for 32 weeks of either a dummy solution; the dummy solution plus the tolerance-inducing plasmid absent the microdystrophin gene; or the plasmid with the microdystrophin gene.

At the end of the 32-week period, by which time the mice were the human equivalent of young adults, the ones that got the microdystrophin-loaded plasmid had significantly greater muscular strength and substantially more dystrophin-producing muscle fibers. They had lower levels of key bloodborne signaling chemicals that carry inflammatory messages between immune cells, and they had weakened antibody responses to normally immunogenic portions of microdystrophin.

“It’s still early days here — this was, after all, a mouse experiment — but it seems we can induce tolerance to a wide assortment of formerly immunogenic proteins by inserting the gene for the protein of interest into the plasmid,” Steinman said. “We’ve seen this with the insulin precursor, in people who have Type 1 diabetes, and with myelin, in people who have multiple sclerosis. It now looks as if the concept may hold for gene therapy, too.”

Steinman is a member of Stanford Bio-X, the Stanford Child Health Research Institute and the Stanford Neurosciences Institute.

Steinman is also chair of the board of Tolerion Inc., a biotechnology company that shares rights to the tolerance-inducing plasmid with Stanford University’s Office of Technology Licensing. He said he is seeking partners to move the tolerance-inducing plasmid into clinical trials as an adjunct to gene therapy.

Other Stanford co-authors of the study are graduate students Lauren Lahey and Klas Magnusson; senior research scientist Antonio Filareto, PhD; life science research professional Peggy Kraft; and Helen Blau, PhD, professor of microbiology and immunology.

Researchers at the University of Washington, the University of Pennsylvania and the University of Mainz, in Germany, also contributed to the work.

The study was funded by the National Institutes of Health (grant HL122332) and the Muscular Dystrophy Association.

Stanford’s Department of Neurology and Neurological Sciences also supported the work

Source