Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
2
3
4
5
6
7
9
12
13
14
15
17
19
22
25
27
12:00 AM - HLTH 2019
28
29
30
31
1
2
3
01 Oct
2019-10-01 - 2019-10-02    
All Day
The UK’s leading health technology and smart health event, bringing together a specialist audience of over 4,000 health and care professionals covering IT and clinical [...]
08 Oct
2019-10-08 - 2019-10-09    
12:00 am
Looking to maximize the efficiency of your current Revenue Cycle solution? Join us as we present strategies for analyzing your MEDITECH Revenue Cycle, and learn from other [...]
2019 Southwest Dental Conference
2019-10-10 - 2019-10-11    
All Day
ABOUT 2019 SOUTHWEST DENTAL CONFERENCE For 91 years, the Southwest Dental Conference has been the meeting of choice for quality professional development and innovative educational [...]
Annual Conference & Exhibition Lyotalk USA 2019
2019-10-10 - 2019-10-11    
All Day
ABOUT ANNUAL CONFERENCE & EXHIBITION LYOTALK USA 2019 Lyotalk is USA’s largest annual conference on Lyophilization/Freeze Drying. Lyotalk attracts gathering from of 150+ experts from [...]
Lab Indonesia 2019
2019-10-10 - 2019-10-12    
All Day
ABOUT LAB INDONESIA 2019 LabAsia is Southeast Asia’s leading laboratory exhibition, serving as the region’s trade platform for laboratory equipment & services suppliers to engage [...]
30th International Conference on Clinical and Experimental Ophthalmology
2019-10-11 - 2019-10-12    
All Day
ABOUT 30TH INTERNATIONAL CONFERENCE ON CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY The 30th International Conference on Clinical and Experimental Ophthalmology is going to be held during October [...]
7th International Conference on Cosmetology & Beauty 2019
Cosmetology and Beauty 2019 passionately welcomes each one of you to attend a global conference in the field of cosmetology which is held on October [...]
16 Oct
2019-10-16 - 2019-10-17    
All Day
ABOUT 17TH INTERNATIONAL CONFERENCE ON CANCER RESEARCH AND THERAPY Cancer Research Conference 2019 coordinates addressing the principal themes and in addition inevitable methodologies of oncology. [...]
Global Cardio Diabetes Conclave 2019
2019-10-18 - 2019-10-20    
All Day
ABOUT GLOBAL CARDIO DIABETES CONCLAVE 2019 A strong correlation between cardiovascular diseases and diabetes is now well established. The American Heart Association considers that individuals [...]
2019 Rehabilitation Medicine Society of Australia and New Zealand
2019-10-20 - 2019-10-23    
All Day
ABOUT 2019 REHABILITATION MEDICINE SOCIETY OF AUSTRALIA AND NEW ZEALAND On behalf of Rehabilitation Medicine Society of Australia and New Zealand (RMSANZ) and the organising [...]
21 Oct
2019-10-21 - 2019-10-23    
All Day
ABOUT GLOBAL CONFERENCE ON SURGERY AND ANESTHESIA (GCSA 2019) Global Conference on Surgery and Anesthesia (GCSA 2019) scheduled on October 21-23 2019 in Dubai, UAE [...]
21 Oct
2019-10-21 - 2019-10-22    
All Day
ABOUT 10TH INTERNATIONAL CONFERENCE ON MASS SPECTROMETRY AND CHROMATOGRAPHY ME Conferences is excited to announce the “10th International Conference on Mass Spectrometry and Chromatography” that [...]
MEDICAL JAPAN 2019 TOKYO
2019-10-23 - 2019-10-25    
All Day
ABOUT MEDICAL JAPAN 2019 TOKYO B to B Trade Show Covering All the Products/Services/Technologies in the Healthcare Industry! MEDICAL JAPAN TOKYO, a sister show of [...]
15th ACAM Laser and Cosmetic Medicine Conference 2019
2019-10-23 - 2019-10-25    
All Day
ABOUT 15TH ACAM LASER AND COSMETIC MEDICINE CONFERENCE 2019 As the new president of ACAM, I am delighted to welcome you all to the 15th [...]
23rd European Nephrology Conference
2019-10-24 - 2019-10-25    
All Day
ABOUT 23RD EUROPEAN NEPHROLOGY CONFERENCE Theme: The Imminent of Nephrology: Current & Advance Approaches to treat Kidney Diseases 23rd European Nephrology Conference is the world’s [...]
FNCE 2019 Food & Nutrition Conference & Expo
2019-10-26 - 2019-10-29    
All Day
ABOUT FNCE 2019 – FOOD & NUTRITION CONFERENCE & EXPO Experience dynamic educational opportunities not available elsewhere. Gain access to new trends, perspectives from expert [...]
HLTH 2019
2019-10-27 - 2019-10-30    
All Day
ABOUT HLTH 2019 HLTH is the largest and most important conference for health innovation. It’s an unprecedented, large-scale forum for collaboration across senior leaders from [...]
Events on 2019-10-01
01 Oct
Events on 2019-10-08
08 Oct
8 Oct 19
Massachusetts
Events on 2019-10-10
Events on 2019-10-18
Global Cardio Diabetes Conclave 2019
18 Oct 19
Bidhannagar
Events on 2019-10-23
Events on 2019-10-24
Events on 2019-10-26
Events on 2019-10-27
HLTH 2019
27 Oct 19
Las Vegas
Articles News

The COMET model uses deep learning to improve disease prediction.

EMR Industry

A new machine learning framework called COMET uses transfer learning to combine EHR data with omics analysis, greatly improving predictive modeling and revealing biological insights from small cohorts.

Researchers introduced clinical and omics multimodal analysis enhanced with transfer learning (COMET), a deep learning and transfer learning protocol, in a recent work that was published in the journal Nature Machine Intelligence.

Technological developments in omics have transformed our understanding of biology. Analyte quantification in the same material is now affordable thanks to proteomic, metabolic, transcriptomic, and other tests. Although these tests produce high-dimensional data, the number of omics cohorts is constrained by clinical and financial factors. As a result, new methods are required to enhance high-dimensional data analysis.

While statistical techniques deal with false positives, machine learning (ML) techniques are less common. Some strategies use transfer learning, a method in which a machine learning model is trained on a pre-training dataset and then applied to a smaller dataset. Even though more recent deep learning techniques have been used with statistical frameworks, they mostly rely on learning from omics data or useful metadata.

By combining early and late fusion techniques and using pretraining on sizable electronic health record (EHR) datasets, the COMET architecture gets over these restrictions and enables better biological discovery and prediction performance.

The research and conclusions
Researchers presented COMET, a deep learning and transfer learning technique that enhances omics analyses, in this work. When omics data and electronic health records (EHR) are accessible for both small and large cohorts, COMET may be used. COMET includes pre-training, multimodal modeling, and a technique for embedding longitudinal EHR data.

In COMET, a multimodal architecture trained and assessed on a smaller sample using omics and EHR data will receive the weights of an ML model that was trained exclusively on EHR data. First, a Stanford Healthcare pregnancy cohort of more than 30,904 people had their days to labor onset predicted using COMET. A proteomics dataset of 1,317 proteins was created using many plasma samples taken from 61 pregnant people (the omics cohort) during the final days of pregnancy.

Days to labor onset were predicted using EHR data from blood sampling at the beginning of pregnancy. Weights were passed to a multimodal network trained to generate predictions on the omics cohort following pre-training on EHR-only data (of 30,843 people). The model’s good predictive power was demonstrated by its 0.868 Pearson correlation coefficient (95% CI [0.825, 0.900]). The actual number of days before labor beginning and the anticipated number of days were strongly correlated, suggesting that COMET was quite accurate in small cohorts with multidimensional data.

Next, either proteomics data, EHR data, or both were used to compare COMET with baseline models. These baseline models didn’t have pre-training and only used omics cohort data. With a correlation of 0.768, the EHR-only baseline model scored the worst, but the proteomics-only model did somewhat better at 0.796. With a correlation of 0.815, the combined baseline model outperformed the others, but it was still less effective than COMET.

By projecting the correlation matrix into two dimensions, researchers used t-distributed stochastic neighbor embedding (t-SNE) to visualize multimodal data and uncover significant feature clusters based on correlation patterns. This allowed them to obtain deeper insights. Correlations between close features and every other variable in the space are comparable. The medical ideas that the EHR or protein properties within each cluster represent were used to annotate these clusters. Significant relationships between different proteins and EHR factors were found.

Each protein’s feature importance was calculated by the team. In accordance with accepted biological knowledge, proteins shown to be very significant in COMET models linked with gestational age, pregnancy problems, and fetal development. The three-year cancer mortality was then predicted using COMET on a cancer cohort from the UK Biobank. All of the participants had received a cancer diagnosis within five years after their enrollment.

Blood samples from a subset of participants were available and subjected to proteome analysis. If the samples were taken within a year of the cancer diagnosis, they were added to the omics cohort. With an area under the receiver operating characteristic curve (AUROC) of 0.842, COMET consistently outperformed all baselines in predicting three-year cancer mortality, exceeding both the single-modality and joint baseline models (AUROC 0.786). In the omics cohort, the three-year death rate was 5.5%.

Furthermore, compared to labor onset data, the correlation matrix, which was shown using t-SNE, showed reduced overlap between EHR and proteomics data modalities. However, when the correlation network was displayed, with each modality projected into two dimensions separately, there were notable correlations between proteomics and EHR data modalities. Its potential as a predictive biomarker was highlighted by the fact that mortality factor 4-like protein 2 showed the highest associations with EHR parameters, especially medication prescriptions.

Sixty-six percent of proteins from cancer patients did not correlate with any EHR characteristic. Additionally, the researchers calculated the highest correlation across all proteins for each EHR feature as well as the connection between each EHR feature and all proteins. This highlighted the importance of including several data modalities by revealing numerous EHR variables with weak associations to proteins in cancer patients.

Greater feature relevance proteins in COMET models correspond to established biomarkers for cancer prognosis. Crucially, the biological relevance of the model was further confirmed by the statistical association of mortality status with nine proteins that were more significant in COMET models.

Conclusions
Overall, the study demonstrated how COMET may enhance predictive modeling for a variety of tasks by using pre-training and transfer learning. Better-regularized models that more closely mirrored known biology were produced by COMET. Furthermore, biologically significant proteins for particular health outcomes were found using COMET models.

Proteins essential for immunological control, placental development, and pregnancy problems were identified by COMET in labor onset models, and its predictive power was corroborated by Pearson correlation values. Proteins implicated in tumor growth and microenvironment modification were found to be associated with cancer mortality. All things considered, COMET offers a framework for defining intricate connections between biological pathways and clinical manifestations.