Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
29
30
31
1
2
5
7
8
12
13
14
16
17
21
22
23
24
25
26
27
28
1
Proper Management of Medicare/Medicaid Overpayments to Limit Risk of False Claims
2015-01-28    
1:00 pm - 3:00 pm
January 28, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9AM AKST | 8AM HAST Topics Covered: Identify [...]
EhealthInitiative Annual Conference 2015
2015-02-03 - 2015-02-05    
All Day
About the Annual Conference Interoperability: Building Consensus Through the 2020 Roadmap eHealth Initiative’s 2015 Annual Conference & Member Meetings, February 3-5 in Washington, DC will [...]
Real or Imaginary -- Manipulation of digital medical records
2015-02-04    
1:00 pm - 3:00 pm
February 04, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Orlando Regional Conference
2015-02-06    
All Day
February 06, 2015 Lake Buena Vista, FL Topics Covered: Hot Topics in Compliance Compliance and Quality of Care Readying the Compliance Department for ICD-10 Compliance [...]
Patient Engagement Summit
2015-02-09 - 2015-02-10    
12:00 am
THE “BLOCKBUSTER DRUG OF THE 21ST CENTURY” Patient engagement is one of the hottest topics in healthcare today.  Many industry stakeholders consider patient engagement, as [...]
iHT2 Health IT Summit in Miami
2015-02-10 - 2015-02-11    
All Day
February 10-11, 2015 iHT2 [eye-h-tee-squared]: 1. an awe-inspiring summit featuring some of the world.s best and brightest. 2. great food for thought that will leave you begging [...]
Starting Urgent Care Business with Confidence
2015-02-11    
1:00 pm - 3:00 pm
February 11, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Managed Care Compliance Conference
2015-02-15 - 2015-02-18    
All Day
February 15, 2015 - February 18, 2015 Las Vegas, NV Prospectus Learn essential information for those involved with the management of compliance at health plans. [...]
Healthcare Systems Process Improvement Conference 2015
2015-02-18 - 2015-02-20    
All Day
BE A PART OF THE 2015 CONFERENCE! The Healthcare Systems Process Improvement Conference 2015 is your source for the latest in operational and quality improvement tools, methods [...]
A Practical Guide to Using Encryption for Reducing HIPAA Data Breach Risk
2015-02-18    
1:00 pm - 3:00 pm
February 18, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Compliance Strategies to Protect your Revenue in a Changing Regulatory Environment
2015-02-19    
1:00 pm - 3:30 pm
February 19, 2015 Web Conference 12pm CST | 1pm EST | 11am MT | 10am PST | 9am AKST | 8am HAST Main points covered: [...]
Dallas Regional Conference
2015-02-20    
All Day
February 20, 2015 Grapevine, TX Topics Covered: An Update on Government Enforcement Actions from the OIG OIG and US Attorney’s Office ICD 10 HIPAA – [...]
Events on 2015-02-03
EhealthInitiative Annual Conference 2015
3 Feb 15
2500 Calvert Street
Events on 2015-02-06
Orlando Regional Conference
6 Feb 15
Lake Buena Vista
Events on 2015-02-09
Events on 2015-02-10
Events on 2015-02-11
Events on 2015-02-15
Events on 2015-02-20
Dallas Regional Conference
20 Feb 15
Grapevine
Articles News

Using machine learning to transform the handling of missing data in EHRs

EMR Industry

A thorough systematic review assessing methods for dealing with missing data in electronic health records (EHRs) was carried out by researchers from Peking University’s National Institute of Health Data Science and Peking University People’s Hospital’s Department of Clinical Epidemiology and Biostatistics. The study, which was published in Health Data Science, emphasizes how machine learning techniques are becoming more and more crucial than conventional statistical methods for handling missing data situations.

Because they allow for analysis of clinical trials, treatment effectiveness studies, and genetic association research, electronic health records have emerged as a key component of contemporary healthcare research. Missing data, however, continues to be a problem since it can introduce bias and compromise the validity of results. This study examined 46 research papers from 2010 to 2024, methodically contrasting the effectiveness of contemporary machine learning techniques like k-Nearest Neighbors (KNN) and Generative Adversarial Networks (GANs) with more conventional statistical techniques like Multiple Imputation by Chained Equations (MICE).

The results show that while addressing both longitudinal and cross-sectional datasets, machine learning techniques—in particular, GAN-based methods and context-aware time-series imputation (CATSI)—consistently performed better than conventional statistical approaches. While probabilistic principle component analysis (PCA) and MICE performed better for cross-sectional datasets, Med.KNN and CATSI performed better for longitudinal data.

The potential of machine learning techniques to solve missing data in EHRs is substantial. The necessity for uniform benchmarking analyses across various datasets and missingness circumstances is highlighted by the fact that no single method provides a solution that is generally applicable.

Associate Professor Dr. Huixin Liu of Peking University People’s Hospital

The opacity of machine learning models, the variability of EHR datasets, and the absence of common standards for evaluating technique success are some of the major issues the report also highlights. Future studies seek to create benchmarking datasets for thorough assessment and standardize the process for managing missing EHR data.

According to Dr. Shenda Hong, an assistant professor at Peking University’s National Institute of Health Data Science, “our ultimate goal is to create a universally accepted protocol for handling missing data in electronic health records, ensuring more reliable and reproducible findings across medical research,” she added.

By providing insights that can aid in bridging the gap between robust analysis and data paucity, this research represents a big step toward tackling one of the most critical difficulties in digital healthcare research.