Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
29
30
1
2
3
4
5
7
8
10
11
12
13
14
15
16
17
18
20
22
23
24
25
26
27
28
29
30
31
1
C.D. Howe Institute Roundtable Luncheon
2014-04-28    
12:00 pm - 1:30 pm
Navigating the Healthcare System: The Patient’s Perspective Please join us for this Roundtable Luncheon at the C.D. Howe Institute with Richard Alvarez, Chief Executive Officer, [...]
DoD / VA EHR and HIT Summit
DSI announces the 6th iteration of our DoD/VA iEHR & HIE Summit, now titled “DoD/VA EHR & HIT Summit”. This slight change in title is to help [...]
Electronic Medical Records: A Conversation
2014-05-09    
1:00 pm - 3:30 pm
WID, the Holtz Center for Science & Technology Studies and the UW–Madison Office of University Relations are offering a free public dialogue exploring electronic medical records (EMRs), a rapidly disseminating technology [...]
The National Conference on Managing Electronic Records (MER) - 2014
2014-05-19    
All Day
" OUTSTANDING QUALITY – Every year, for over 10 years, 98% of the MER’s attendees said they would recommend the MER! RENOWNED SPEAKERS – delivering timely, accurate information as well as an abundance of practical ideas. 27 SESSIONS AND 11 TOPIC-FOCUSED THEMES – addressing your organization’s needs. FULL RANGE OF TOPICS – with sessions focusing on “getting started”, “how to”, and “cutting-edge”, to “thought leadership”. INCISIVE CASE STUDIES – from those responsible for significant implementations and integrations, learn how they overcame problems and achieved success. GREAT NETWORKING – by interacting with peer professionals, renowned authorities, and leading solution providers, you can fast-track solving your organization’s problems. 22 PREMIER EXHIBITORS – in productive 1:1 private meetings, learn how the MER 2014 exhibitors are able to address your organization’s problems. "
Chicago 2014 National Conference for Medical Office Professionals
2014-05-21    
12:00 am
3 Full Days of Training Focused on Optimizing Medical Office Staff Productivity, Profitability and Compliance at the Sheraton Chicago Hotel & Towers Featuring Keynote Presentation [...]
Events on 2014-04-28
Events on 2014-05-06
DoD / VA EHR and HIT Summit
6 May 14
Alexandria
Events on 2014-05-09
Articles News

Using machine learning to transform the handling of missing data in EHRs

EMR Industry

A thorough systematic review assessing methods for dealing with missing data in electronic health records (EHRs) was carried out by researchers from Peking University’s National Institute of Health Data Science and Peking University People’s Hospital’s Department of Clinical Epidemiology and Biostatistics. The study, which was published in Health Data Science, emphasizes how machine learning techniques are becoming more and more crucial than conventional statistical methods for handling missing data situations.

Because they allow for analysis of clinical trials, treatment effectiveness studies, and genetic association research, electronic health records have emerged as a key component of contemporary healthcare research. Missing data, however, continues to be a problem since it can introduce bias and compromise the validity of results. This study examined 46 research papers from 2010 to 2024, methodically contrasting the effectiveness of contemporary machine learning techniques like k-Nearest Neighbors (KNN) and Generative Adversarial Networks (GANs) with more conventional statistical techniques like Multiple Imputation by Chained Equations (MICE).

The results show that while addressing both longitudinal and cross-sectional datasets, machine learning techniques—in particular, GAN-based methods and context-aware time-series imputation (CATSI)—consistently performed better than conventional statistical approaches. While probabilistic principle component analysis (PCA) and MICE performed better for cross-sectional datasets, Med.KNN and CATSI performed better for longitudinal data.

The potential of machine learning techniques to solve missing data in EHRs is substantial. The necessity for uniform benchmarking analyses across various datasets and missingness circumstances is highlighted by the fact that no single method provides a solution that is generally applicable.

Associate Professor Dr. Huixin Liu of Peking University People’s Hospital

The opacity of machine learning models, the variability of EHR datasets, and the absence of common standards for evaluating technique success are some of the major issues the report also highlights. Future studies seek to create benchmarking datasets for thorough assessment and standardize the process for managing missing EHR data.

According to Dr. Shenda Hong, an assistant professor at Peking University’s National Institute of Health Data Science, “our ultimate goal is to create a universally accepted protocol for handling missing data in electronic health records, ensuring more reliable and reproducible findings across medical research,” she added.

By providing insights that can aid in bridging the gap between robust analysis and data paucity, this research represents a big step toward tackling one of the most critical difficulties in digital healthcare research.