Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
2
3
4
5
6
7
8
9
10
8:30 AM - HIMSS Europe
11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
1
2
3
4
5
6
e-Health 2025 Conference and Tradeshow
2025-06-01 - 2025-06-03    
10:00 am - 5:00 pm
The 2025 e-Health Conference provides an exciting opportunity to hear from your peers and engage with MEDITECH.
HIMSS Europe
2025-06-10 - 2025-06-12    
8:30 am - 5:00 pm
Transforming Healthcare in Paris From June 10-12, 2025, the HIMSS European Health Conference & Exhibition will convene in Paris to bring together Europe’s foremost health [...]
38th World Congress on  Pharmacology
2025-06-23 - 2025-06-24    
11:00 am - 4:00 pm
About the Conference Conference Series cordially invites participants from around the world to attend the 38th World Congress on Pharmacology, scheduled for June 23-24, 2025 [...]
2025 Clinical Informatics Symposium
2025-06-24 - 2025-06-25    
11:00 am - 4:00 pm
Virtual Event June 24th - 25th Explore the agenda for MEDITECH's 2025 Clinical Informatics Symposium. Embrace the future of healthcare at MEDITECH’s 2025 Clinical Informatics [...]
International Healthcare Medical Device Exhibition
2025-06-25 - 2025-06-27    
8:30 am - 5:00 pm
Japan Health will gather over 400 innovative healthcare companies from Japan and overseas, offering a unique opportunity to experience cutting-edge solutions and connect directly with [...]
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
Events on 2025-06-01
Events on 2025-06-10
HIMSS Europe
10 Jun 25
France
Events on 2025-06-23
38th World Congress on  Pharmacology
23 Jun 25
Paris, France
Events on 2025-06-24
Events on 2025-06-25
International Healthcare Medical Device Exhibition
25 Jun 25
Suminoe-Ku, Osaka 559-0034
Events on 2025-06-30

Events

Articles

6 Improvements Machine Learning Is Making in the Healthcare Industry

machine learning in healthcare

6 Improvements Machine Learning Is Making in the Healthcare Industry

The healthcare industry is often on the cutting edge of new beneficial technology and the fields of machine learning and artificial intelligence are no exception. Here are six improvements machine learning is making in the healthcare industry.

1. Cost Savings

One of the most common applications of machine learning operations currently is in managing healthcare systems and the various administrative work related to running those systems. Creating more efficient management and administrative systems and streamlining those workflows can make record-keeping and data tracking more efficient and accurate. The improvement and automation of these processes can greatly reduce the cost of running and managing them.

2. Patient Data Management

Another key usage of machine learning operations today is managing patient data. This data can overwhelm healthcare providers, who hardly ever see only a single patient in one day. Machine learning algorithms can help identify patterns and provide insights into several aspects of healthcare that providers might miss or take longer to find. These include overall patterns in the population, patterns in an individual’s medical history or family history and patterns in test results. As machine learning continues to improve, it may enable doctors to increase patient loads and provide more accurate diagnoses and treatment plans much more quickly.

3. Clinical Decision Making

While healthcare providers shouldn’t be placing all their responsibilities on machine learning, these programs provide decision-making assistance when managing healthcare, diagnosing patients and devising treatment plans. Currently, these programs are best suited to assisting in decision-making in medical specialties that focus heavily on collecting data. In disciplines such as ophthalmology, radiology and pathology, for example, they’re able to parse and analyze data from scans and tests. This data can be compiled by the machine learning algorithm to help the healthcare provider determine the best course of treatment.

4. Security

Security is a vital measure in the healthcare industry. Physical security necessary to protect healthcare providers, patients and visitors in hospitals, clinics and private practices. However, as patient data and communications switch from paperwork and phone calls to digital media, cybersecurity is growing in importance. Machine learning can be used by cybercriminals to attack healthcare systems and steal data, corrupt systems or install ransomware. On the other hand, it can also be used by healthcare systems to protect data and systems from those attacks. Because machine learning algorithms can be taught to recognize patterns and learn on the job, they can improve their security protections on their own as they encounter cyber attacks. That said, machine learning programs should be used in conjunction with other methods of cybersecurity, rather than alone. Cybersecurity works best in overlapping layers.

5. Policy Oversight

Not all of the improvements in the healthcare industry are direct results of machine learning implementations. In some cases, the changes are more tangential. For example, the leveraging of these programs creates a need for improved healthcare policy oversight. Machine learning programs require a certain balance of regulating technological innovation without blocking innovation or expansion. Additionally, this creates an opportunity to review existing healthcare policies and improve oversight and transparency. Revamped healthcare policies can improve patient care and security while also ensuring the public is aware of medical practice.

6. Precision Medicine

One of the newest uses of machine learning in medicine is called precision medicine. This application incorporates other aspects of a patient’s life besides his or her medical and family history. These programs currently incorporate information on a person’s lifestyle, diet and environment to understand the patient’s health risks as compared to the wider population. As machine learning operations improve, other personal data, such as genetics, can increasingly be incorporated into and cross-referenced with other data elements in order to provide an even clearer and more detailed projection of a patient’s health. Machine learning can not only make it easier to keep track of information and streamline the background tasks of medicine, but it can also increasingly assist in diagnosing and treating many different medical conditions.