Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
1
2
3
4
6
7
8
10
11
12
13
14
15
17
18
20
21
22
24
25
28
29
30
31
1
2
3
4
5
Food and Beverages
2021-07-26 - 2021-07-27    
12:00 am
The conference highlights the theme “Global leading improvement in Food Technology & Beverages Production” aimed to provide an opportunity for the professionals to discuss the [...]
European Endocrinology and Diabetes Congress
2021-08-05 - 2021-08-06    
All Day
This conference is an extraordinary and leading event ardent to the science with practice of endocrinology research, which makes a perfect platform for global networking [...]
Big Data Analysis and Data Mining
2021-08-09 - 2021-08-10    
All Day
Data Mining, the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the [...]
Agriculture & Horticulture
2021-08-16 - 2021-08-17    
All Day
Agriculture Conference invites a common platform for Deans, Directors, Professors, Students, Research scholars and other participants including CEO, Consultant, Head of Management, Economist, Project Manager [...]
Wireless and Satellite Communication
2021-08-19 - 2021-08-20    
All Day
Conference Series llc Ltd. proudly invites contributors across the globe to its World Convention on 2nd International Conference on Wireless and Satellite Communication (Wireless Conference [...]
Frontiers in Alternative & Traditional Medicine
2021-08-23 - 2021-08-24    
All Day
World Health Organization announced that, “The influx of large numbers of people to mass gathering events may give rise to specific public health risks because [...]
Agroecology and Organic farming
2021-08-26 - 2021-08-27    
All Day
Current research on emerging technologies and strategies, integrated agriculture and sustainable agriculture, crop improvements, the most recent updates in plant and soil science, agriculture and [...]
Agriculture Sciences and Farming Technology
2021-08-26 - 2021-08-27    
All Day
Current research on emerging technologies and strategies, integrated agriculture and sustainable agriculture, crop improvements, the most recent updates in plant and soil science, agriculture and [...]
CIVIL ENGINEERING, ARCHITECTURE AND STRUCTURAL MATERIALS
2021-08-27 - 2021-08-28    
All Day
Engineering is applied to the profession in which information on the numerical/mathematical and natural sciences, picked up by study, understanding, and practice, are applied to [...]
Diabetes, Obesity and Its Complications
2021-09-02 - 2021-09-03    
All Day
Diabetes Congress 2021 aims to provide a platform to share knowledge, expertise along with unparalleled networking opportunities between a large number of medical and industrial [...]
Events on 2021-07-26
Food and Beverages
26 Jul 21
Events on 2021-08-05
Events on 2021-08-09
Events on 2021-08-16
Events on 2021-08-19
Events on 2021-08-23
Events on 2021-09-02
Articles

6 Improvements Machine Learning Is Making in the Healthcare Industry

machine learning in healthcare

6 Improvements Machine Learning Is Making in the Healthcare Industry

The healthcare industry is often on the cutting edge of new beneficial technology and the fields of machine learning and artificial intelligence are no exception. Here are six improvements machine learning is making in the healthcare industry.

1. Cost Savings

One of the most common applications of machine learning operations currently is in managing healthcare systems and the various administrative work related to running those systems. Creating more efficient management and administrative systems and streamlining those workflows can make record-keeping and data tracking more efficient and accurate. The improvement and automation of these processes can greatly reduce the cost of running and managing them.

2. Patient Data Management

Another key usage of machine learning operations today is managing patient data. This data can overwhelm healthcare providers, who hardly ever see only a single patient in one day. Machine learning algorithms can help identify patterns and provide insights into several aspects of healthcare that providers might miss or take longer to find. These include overall patterns in the population, patterns in an individual’s medical history or family history and patterns in test results. As machine learning continues to improve, it may enable doctors to increase patient loads and provide more accurate diagnoses and treatment plans much more quickly.

3. Clinical Decision Making

While healthcare providers shouldn’t be placing all their responsibilities on machine learning, these programs provide decision-making assistance when managing healthcare, diagnosing patients and devising treatment plans. Currently, these programs are best suited to assisting in decision-making in medical specialties that focus heavily on collecting data. In disciplines such as ophthalmology, radiology and pathology, for example, they’re able to parse and analyze data from scans and tests. This data can be compiled by the machine learning algorithm to help the healthcare provider determine the best course of treatment.

4. Security

Security is a vital measure in the healthcare industry. Physical security necessary to protect healthcare providers, patients and visitors in hospitals, clinics and private practices. However, as patient data and communications switch from paperwork and phone calls to digital media, cybersecurity is growing in importance. Machine learning can be used by cybercriminals to attack healthcare systems and steal data, corrupt systems or install ransomware. On the other hand, it can also be used by healthcare systems to protect data and systems from those attacks. Because machine learning algorithms can be taught to recognize patterns and learn on the job, they can improve their security protections on their own as they encounter cyber attacks. That said, machine learning programs should be used in conjunction with other methods of cybersecurity, rather than alone. Cybersecurity works best in overlapping layers.

5. Policy Oversight

Not all of the improvements in the healthcare industry are direct results of machine learning implementations. In some cases, the changes are more tangential. For example, the leveraging of these programs creates a need for improved healthcare policy oversight. Machine learning programs require a certain balance of regulating technological innovation without blocking innovation or expansion. Additionally, this creates an opportunity to review existing healthcare policies and improve oversight and transparency. Revamped healthcare policies can improve patient care and security while also ensuring the public is aware of medical practice.

6. Precision Medicine

One of the newest uses of machine learning in medicine is called precision medicine. This application incorporates other aspects of a patient’s life besides his or her medical and family history. These programs currently incorporate information on a person’s lifestyle, diet and environment to understand the patient’s health risks as compared to the wider population. As machine learning operations improve, other personal data, such as genetics, can increasingly be incorporated into and cross-referenced with other data elements in order to provide an even clearer and more detailed projection of a patient’s health. Machine learning can not only make it easier to keep track of information and streamline the background tasks of medicine, but it can also increasingly assist in diagnosing and treating many different medical conditions.