Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
2
3
4
5
6
7
8
9
10
8:30 AM - HIMSS Europe
11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
1
2
3
4
5
6
e-Health 2025 Conference and Tradeshow
2025-06-01 - 2025-06-03    
10:00 am - 5:00 pm
The 2025 e-Health Conference provides an exciting opportunity to hear from your peers and engage with MEDITECH.
HIMSS Europe
2025-06-10 - 2025-06-12    
8:30 am - 5:00 pm
Transforming Healthcare in Paris From June 10-12, 2025, the HIMSS European Health Conference & Exhibition will convene in Paris to bring together Europe’s foremost health [...]
38th World Congress on  Pharmacology
2025-06-23 - 2025-06-24    
11:00 am - 4:00 pm
About the Conference Conference Series cordially invites participants from around the world to attend the 38th World Congress on Pharmacology, scheduled for June 23-24, 2025 [...]
2025 Clinical Informatics Symposium
2025-06-24 - 2025-06-25    
11:00 am - 4:00 pm
Virtual Event June 24th - 25th Explore the agenda for MEDITECH's 2025 Clinical Informatics Symposium. Embrace the future of healthcare at MEDITECH’s 2025 Clinical Informatics [...]
International Healthcare Medical Device Exhibition
2025-06-25 - 2025-06-27    
8:30 am - 5:00 pm
Japan Health will gather over 400 innovative healthcare companies from Japan and overseas, offering a unique opportunity to experience cutting-edge solutions and connect directly with [...]
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
Events on 2025-06-01
Events on 2025-06-10
HIMSS Europe
10 Jun 25
France
Events on 2025-06-23
38th World Congress on  Pharmacology
23 Jun 25
Paris, France
Events on 2025-06-24
Events on 2025-06-25
International Healthcare Medical Device Exhibition
25 Jun 25
Suminoe-Ku, Osaka 559-0034
Events on 2025-06-30

Events

Latest News

AI-augmented diabetic retinopathy screening programs cheaper than human grading

AI-augmented diabetic retinopathy screening programs cheaper than human grading

Implementation of either an automated or semi-automated deep learning system for diabetic retinopathy screening could lead to cost savings at the health-system level, according to an economic analysis modeling study recently published in The Lancet Digital Health.

Backed by Singapore’s Ministry of Health, the investigation looked at data from a national diabetic retinopathy screening program conducted within the country in 2015, and modeled the simulated costs of substituting the human-led approach with artificial intelligence-augmented screening techniques.

TOPLINE DATA

Based on the study’s models, diabetes patients would incur a 12-month total cost of $77 per patient when assessed by a human. Using a fully automated screening process would cut this price by 14.3%, to $66 per patient per year, while a semi-automated approach would increase savings by 19.5%, to $62 per patient per year.

Costs relating to the human graders, screening specificities and IT considerations had the greatest impact on these prices. For the former, the researchers highlighted the roughly two minutes a human grader would require to assess each image, which a deep learning system could cut down almost entirely.

Meanwhile, the major difference between the fully automated model and the semi-automated model, which only reduced human grading costs by 74%, was follow-up care driven by each screening method’s specificity.

“The fully automated model … yields greater savings,” the researchers wrote. “This is because of a higher rate of false positives, and therefore more unnecessary specialist visits, under the fully automated model. The higher costs of graders in the semi-automated model is more than offset by the lower consultation costs. However, this is … based on the wages in Singapore, and might not apply to other settings.”

HOW IT WAS DONE

The study relied on a historical dataset of 39,006 diabetes patients screened through a tele-ophthalmology platform as part of the Singapore Integrated Diabetic Retinopathy Programme.

The recorded cost of screening these patients against the hypothetical two deep learning system-based approaches using a decision tree model developed by the research team. Parameters included in this model included diabetic retinopathy prevalence rates, screening costs of each approach, their sensitivity and specificity, and resulting medical consultation costs.

Diagnostic performance and disease prevalence values were collected from local sources or based on the researchers’ prior work. The costs of goods and services were either obtained in 2015, or were adjusted for inflation to reflect their price in June 2015.

THE LARGER TREND

A number of academic teams and major tech providers have been developing algorithm-based approaches to diabetic retinopathy screening, some of which involve devices that are easily mounted onto a smartphone to encourage point-of-care diagnoses. Google in particular has been beating the drum of machine learning-based screening for the last few years, having published study data regarding their system in 2018 and announcing its first real-world clinical use in 2019.

IN CONCLUSION

“Our study shows that both the fully automated and semi-automated [deep learning systems] were less expensive than the current manual grading system for diabetic retinopathy screening in Singapore. By 2050, Singapore is projected to have close to 1 million people with diabetes; if a [deep learning system] is adopted, this could translate into savings of $15 million,” the researchers concluded.