Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
1
2
3
4
6
7
8
10
11
12
13
14
15
17
18
20
21
22
24
25
28
29
30
31
1
2
3
4
5
Food and Beverages
2021-07-26 - 2021-07-27    
12:00 am
The conference highlights the theme “Global leading improvement in Food Technology & Beverages Production” aimed to provide an opportunity for the professionals to discuss the [...]
European Endocrinology and Diabetes Congress
2021-08-05 - 2021-08-06    
All Day
This conference is an extraordinary and leading event ardent to the science with practice of endocrinology research, which makes a perfect platform for global networking [...]
Big Data Analysis and Data Mining
2021-08-09 - 2021-08-10    
All Day
Data Mining, the extraction of hidden predictive information from large databases, is a powerful new technology with great potential to help companies focus on the [...]
Agriculture & Horticulture
2021-08-16 - 2021-08-17    
All Day
Agriculture Conference invites a common platform for Deans, Directors, Professors, Students, Research scholars and other participants including CEO, Consultant, Head of Management, Economist, Project Manager [...]
Wireless and Satellite Communication
2021-08-19 - 2021-08-20    
All Day
Conference Series llc Ltd. proudly invites contributors across the globe to its World Convention on 2nd International Conference on Wireless and Satellite Communication (Wireless Conference [...]
Frontiers in Alternative & Traditional Medicine
2021-08-23 - 2021-08-24    
All Day
World Health Organization announced that, “The influx of large numbers of people to mass gathering events may give rise to specific public health risks because [...]
Agroecology and Organic farming
2021-08-26 - 2021-08-27    
All Day
Current research on emerging technologies and strategies, integrated agriculture and sustainable agriculture, crop improvements, the most recent updates in plant and soil science, agriculture and [...]
Agriculture Sciences and Farming Technology
2021-08-26 - 2021-08-27    
All Day
Current research on emerging technologies and strategies, integrated agriculture and sustainable agriculture, crop improvements, the most recent updates in plant and soil science, agriculture and [...]
CIVIL ENGINEERING, ARCHITECTURE AND STRUCTURAL MATERIALS
2021-08-27 - 2021-08-28    
All Day
Engineering is applied to the profession in which information on the numerical/mathematical and natural sciences, picked up by study, understanding, and practice, are applied to [...]
Diabetes, Obesity and Its Complications
2021-09-02 - 2021-09-03    
All Day
Diabetes Congress 2021 aims to provide a platform to share knowledge, expertise along with unparalleled networking opportunities between a large number of medical and industrial [...]
Events on 2021-07-26
Food and Beverages
26 Jul 21
Events on 2021-08-05
Events on 2021-08-09
Events on 2021-08-16
Events on 2021-08-19
Events on 2021-08-23
Events on 2021-09-02
Articles Latest News

AI predicts CNS infection type and prognosis with 99% accuracy fast.

EMR Industry

Researchers at Yonsei University have developed a deep learning model that nearly perfectly identifies the cause and predicts the prognosis of central nervous system (CNS) infections using just a few images of immune cells taken from cerebrospinal fluid (CSF).

The AI was trained on 3D holotomography images, which capture structural and biochemical details of live cells without the need for stains or labels. It achieved 99% accuracy in classifying infection types—viral, bacterial, or tuberculosis—and 94% accuracy in prognosis prediction.

The team reports that these results can be obtained within an hour after collecting the CSF sample.

The study, published on March 26 in the journal Advanced Intelligent Systems, was highlighted by corresponding author Professor Park Yu-rang from Yonsei University College of Medicine’s Department of Biomedical Systems Informatics as the first to utilize 3D cerebrospinal fluid (CSF) immune cell morphology—rather than protein or genetic markers—for both diagnosing and predicting outcomes of central nervous system (CNS) infections.

Professor Park noted that this tool could “help shorten the time needed for diagnosis and treatment planning in patients with CNS inflammation.”

The prospective study involved 14 adults with confirmed CNS infections treated at Severance Hospital between January and October 2022. Researchers captured 1,427 immune cell images using holotomography, a label-free imaging technique that measures the refractive index (RI) of live cells to reveal their biophysical structure.

Patients were grouped by infection type and clinical outcome, assessed using the modified Rankin Scale (mRS) at discharge. Among the 14 participants, three had poor prognoses (mRS ≥4), and five were diagnosed with bacterial or tuberculosis infections.

The AI model, built on a modified DenseNet-169 architecture, was compared against the widely used ResNet-101. It achieved an area under the ROC curve (AUROC) of 0.89 in differentiating viral from non-viral infections, surpassing ResNet’s 0.82. For prognosis prediction, the model scored an AUROC of 0.79, which improved to 0.94 when analyzing five cells per patient.

Using five immune cell images per patient further enhanced performance, with the AUROC rising to 0.99 for infection type identification and 0.94 for predicting clinical outcomes, showing greater consistency and reduced variability across samples.

Cell morphology proved highly predictive: immune cells from viral infections featured larger nuclei and higher protein density, while cells from patients with poor outcomes exhibited greater dry mass but lower protein density—a pattern also observed in non-viral infections. These features were directly derived from holotomography-based RI measurements.

To interpret the model’s focus, the team applied gradient-weighted class activation mapping (Grad-CAM) to pinpoint cell regions influencing predictions. Variations in refractive index near the nucleus were critical: in viral infections, the relevant area was limited to the inner cell shell, whereas in poor-prognosis cases, nuclear components expanded laterally and outer region density decreased.

Unlike earlier AI models in infectious diseases that depend on clinical data or molecular tests—often requiring electronic health records or lab assays that delay results—this approach leverages cell shape and structure for rapid, label-free analysis with minimal laboratory infrastructure.