Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
2
3
4
5
6
7
8
9
10
8:30 AM - HIMSS Europe
11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
1
2
3
4
5
6
e-Health 2025 Conference and Tradeshow
2025-06-01 - 2025-06-03    
10:00 am - 5:00 pm
The 2025 e-Health Conference provides an exciting opportunity to hear from your peers and engage with MEDITECH.
HIMSS Europe
2025-06-10 - 2025-06-12    
8:30 am - 5:00 pm
Transforming Healthcare in Paris From June 10-12, 2025, the HIMSS European Health Conference & Exhibition will convene in Paris to bring together Europe’s foremost health [...]
38th World Congress on  Pharmacology
2025-06-23 - 2025-06-24    
11:00 am - 4:00 pm
About the Conference Conference Series cordially invites participants from around the world to attend the 38th World Congress on Pharmacology, scheduled for June 23-24, 2025 [...]
2025 Clinical Informatics Symposium
2025-06-24 - 2025-06-25    
11:00 am - 4:00 pm
Virtual Event June 24th - 25th Explore the agenda for MEDITECH's 2025 Clinical Informatics Symposium. Embrace the future of healthcare at MEDITECH’s 2025 Clinical Informatics [...]
International Healthcare Medical Device Exhibition
2025-06-25 - 2025-06-27    
8:30 am - 5:00 pm
Japan Health will gather over 400 innovative healthcare companies from Japan and overseas, offering a unique opportunity to experience cutting-edge solutions and connect directly with [...]
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
Events on 2025-06-01
Events on 2025-06-10
HIMSS Europe
10 Jun 25
France
Events on 2025-06-23
38th World Congress on  Pharmacology
23 Jun 25
Paris, France
Events on 2025-06-24
Events on 2025-06-25
International Healthcare Medical Device Exhibition
25 Jun 25
Suminoe-Ku, Osaka 559-0034
Events on 2025-06-30
Articles

Clinical trials can be expedited in part by: With electronic medical records, jump straight to the data

It has been projected that the amount of published scientific publications doubles every 17.3 years. But before basic lab studies on cell cultures and animals become clinical trials involving humans, it takes an average of 17 years for health and medical research to lead to real changes that patients observe in the clinic.

Medical research processes as they normally operate are typically ill-prepared to deal with rapidly changing pandemics. This has been particularly clear in the case of the COVID-19 pandemic, partly due to the virus’s frequent mutations. It is frequently left to scientists and public health officials to constantly juggle the development and testing of novel medicines to keep up with evolving varieties.

Thankfully, by utilizing a shared source of existing data, electronic medical records, or EMRs, scientists may be able to circumvent the traditional research timetable and investigate therapies and interventions as they are utilized in the clinic almost in real time.

Our team consists of a cardiologist from the University of Pittsburgh Medical Center, a pharmacist, and an epidemiology. We became aware of the urgency of promptly researching and sharing precise information on the best treatment modalities during the COVID-19 epidemic, particularly for patients who were at a high risk of hospitalization and death. Using electronic medical records (EMR) data, our newly published study demonstrated that early therapy with one or more of five distinct monoclonal antibodies significantly decreased the chance of hospitalization or mortality when compared with delayed or no treatment.

Conducting research with EMR data

EMR systems are commonly used by U.S. health care institutions for billing and administrative functions such as patient care documentation. These systems generally hold comprehensive records that can include sociodemographic data, medical history, test results, surgery and other operations, prescriptions, and billing expenses, even though data gathering is not consistent.

Many sizable health care systems in the United States gather patient data utilizing several EMR systems, in contrast to single-payer health care systems that integrate data into a single EMR system, such those in the United Kingdom and Scandinavian nations.

Using such data for scientific inquiry is made more challenging by the existence of multiple EMR systems. In response, the 40 hospitals and outpatient clinics of the University of Pittsburgh Medical Center utilize seven distinct EMR systems. To address this, the medical center created and manages a clinical data warehouse that gathers and unifies data from these systems.

Simulating medical procedures

Researching using EMR data is not a novel idea. Recently, scientists have begun investigating how to simulate randomized controlled trials—which are seen to be the gold standard study design but are sometimes expensive and take years to finish—using these massive health data platforms.

Our team evaluated five distinct monoclonal antibodies for which the Food and Drug Administration has granted emergency use authorization to treat COVID-19 using this emulation approach and our institution’s EMR data infrastructure. Human-made proteins known as monoclonal antibodies are intended to stop a pathogen—in this case, the COVID-19 virus—from penetrating human cells, proliferating, and posing a major threat to health. Clinical trial data served as the foundation for the initial authorizations. However, when the virus changed, further assessments based on cell

Our goal was to verify that the results of research conducted on cells could be applied to real patients. In order to match the anonymous clinical data from 2,571 patients treated with these monoclonal antibodies within two days of contracting COVID-19 with the data from 5,135 COVID-19 patients who were eligible for treatment but either did not receive it or received it three days or more after infection, we evaluated the data.

Those who received monoclonal antibodies within two days of a positive COVID-19 test, on average, had a 39% lower chance of dying or being admitted to the hospital than those who did not receive the medication or who received it later. Furthermore, regardless of age, patients with weakened immune systems had a 55% lower chance of dying or being admitted to the hospital.

The results of the cell culture investigations were validated by our near-real-time monitoring of COVID-19 patients receiving monoclonal antibodies during the pandemic. According to our findings, researchers may be able to assess therapies quickly and without the need for clinical trials by utilizing data in this manner.

Appropriate usage of EMR data

Researchers can use the EMR systems found in many healthcare facilities to quickly address significant research topics as they come up. However, since this clinical data isn’t being gathered especially for studies, researchers must carefully plan their investigations and employ rigorous data validation and analysis. Additionally, they must exercise extreme caution when choosing suitable patient samples, harmonizing data from various EMR systems, and minimizing any potential sources of bias.

Significant public health issues and new pandemics are likely to appear suddenly and in unexpected ways. We think that judicious use of these data can assist address pressing health concerns in ways that are indicative of who is actually receiving care, given the wealth of information routinely gathered throughout U.S. health care systems.