Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
22
23
25
26
27
28
29
30
31
1
2
3
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
AI in Healthcare Forum
2025-07-10 - 2025-07-11    
10:00 am - 5:00 pm
Jeff Thomas, Senior Vice President and Chief Technology Officer, shares how the migration not only saved the organization millions of dollars but also led to [...]
28th World Congress on  Nursing, Pharmacology and Healthcare
2025-07-21 - 2025-07-22    
10:00 am - 5:00 pm
To Collaborate Scientific Professionals around the World Conference Date:  July 21-22, 2025
5th World Congress on  Cardiovascular Medicine Pharmacology
2025-07-24 - 2025-07-25    
10:00 am - 5:00 pm
About Conference The 5th World Congress on Cardiovascular Medicine Pharmacology, scheduled for July 24-25, 2025 in Paris, France, invites experts, researchers, and clinicians to explore [...]
Events on 2025-06-30
Events on 2025-07-10
AI in Healthcare Forum
10 Jul 25
New York
Events on 2025-07-21
Events on 2025-07-24

Events

Articles

Cluster analysis, EHRs visualize, detect rare genetic

The study utilized a dataset comprising deidentified structured medical records from approximately 1.28 million patients across three healthcare institutions under the Singapore Health Services (SingHealth) cluster. This dataset covered a 3-year period from January 1, 2018, to March 1, 2022, and included the National Heart Centre Singapore, KK Women’s and Children’s Hospital, and Singapore General Hospital. The research adhered to relevant guidelines and regulations, receiving approval from the SingHealth Data Governance committee, with the SingHealth Centralised Institutional Review Board waiving the need for informed consent.

Data extraction involved collecting information from diverse sources within the SingHealth Database, such as laboratory results, radiology reports, pathology records, diagnoses, and detailed patient information. To mitigate privacy risks, only structured data was extracted initially, excluding free-text fields. Sensitive data fields were pseudonymized based on the “SingHealth Policy for Data Anonymisation” through a trusted third party. The pseudonymized data were then transferred to the Office of Insights and Analytics High-Performance Computer Lab, ensuring strict security measures to restrict access to authorized personnel only.

Post-deidentification, the structured data underwent normalization and standardization using the Population Builder tool, a third-party platform. Value sets in Population Builder facilitated grouping codes related to the same disease/phenotype, streamlining the filtering process. Two rare diseases, Fabry Disease and Familial Hypercholesterolemia (FH), were selected for the pilot project due to well-defined diagnostic criteria and extractable data from health records.

The diagnostic criteria for Fabry Disease and FH were outlined, and value sets were created to identify patients with known diagnoses. Data wrangling involved specific metrics examination for each patient cohort, retrieving relevant data using SQL queries, and subsequent manipulation in RStudio for analysis.

Data analysis encompassed visualization and statistical testing. The tidyverse and lubridate R packages were employed for visualizing demographic data through pie charts, scatterplots, boxplots, bar graphs, and a Venn diagram. Statistical testing involved a two-sample t-test to assess the difference in mean LDL-C levels between FH True Positives (TP) and suspects.

In summary, the study employed rigorous methods for data extraction, deidentification, and analysis, aiming to identify undiagnosed patients with rare genetic diseases through cluster analysis and visualization of electronic health records data.