Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
30
12:00 AM - Hepatology 2021
31
1
2
3
4
7
8
9
10
11
13
14
15
16
18
19
20
21
22
23
24
25
27
28
29
30
1
2
World Nanotechnology Congress 2021
2021-03-29    
All Day
Nano Technology Congress 2021 provides you with a unique opportunity to meet up with peers from both academic circle and industries level belonging to Recent [...]
Nanomedicine and Nanomaterials 2021
2021-03-29    
All Day
NanoMed 2021 conference provides the best platform of networking and connectivity with scientist, YRF (Young Research Forum) & delegates who are active in the field [...]
Smart Materials and Nanotechnology
2021-03-29 - 2021-03-30    
All Day
Smart Material 2021 clears a stage to globalize the examination by introducing an exchange amongst ventures and scholarly associations and information exchange from research to [...]
Hepatology 2021
2021-03-30 - 2021-03-31    
All Day
Hepatology 2021 provides a great platform by gathering eminent professors, Researchers, Students and delegates to exchange new ideas. The conference will cover a wide range [...]
Annual Congress on  Dental Medicine and Orthodontics
2021-04-05 - 2021-04-06    
All Day
Dentistry Medicine 2021 is a perfect opportunity intended for International well-being Dental and Oral experts too. The conference welcomes members from every driving university, clinical [...]
World Climate Congress & Expo 2021
2021-04-06 - 2021-04-07    
All Day
Climatology is the study of the atmosphere and weather patterns over time. This field of science focuses on recording and analyzing weather patterns throughout the [...]
European Food Chemistry and Drug Safety Congress
2021-04-12 - 2021-04-13    
All Day
We invite you to meet us at the Food Chemistry Congress 2021, where we will ensure that you’ll have a worthwhile experience with scholars of [...]
Proteomics, Genomics & Bioinformatics
2021-04-12 - 2021-04-13    
All Day
Proteomics 2021 is one of the front platforms for disseminating latest research results and techniques in Proteomics Research, Mass spectrometry, Bioinformatics, Computational Biology, Biochemistry and [...]
Plant Science & Physiology
2021-04-17 - 2021-04-18    
All Day
The PLANT PHYSIOLOGY 2021 theme has broad interests, which address many aspects of Plant Biology, Plant Science, Plant Physiology, Plant Biotechnology, and Plant Pathology. Research [...]
Pollution Control & Sustainable 2021
2021-04-26 - 2021-04-27    
All Day
Pollution Control 2021 conference is organizing with the theme of “Accelerating Innovations for Environmental Sustainability” Conference Series llc LTD organizes environmental conferences series 1000+ Global [...]
Events on 2021-03-30
Hepatology 2021
30 Mar 21
Events on 2021-04-06
Events on 2021-04-17
Events on 2021-04-26
Articles

Jul 09 : EHRs enable researchers to predict patient depression

predict patient depression
Researchers from Stanford University have demonstrated the usefulness of EHR data in predicting the diagnosis of depression up to a year in advance, according to research published in the Journal of the American Medical Informatics Association (JAMIA).
“Our results suggest the use of EHR data can improve the timely diagnosis of depression, which is associated with better prognoses when combined with prompt initiation of treatment,” the authors maintain. “Ideally, we are searching not only for models that can diagnose depression early to improve prognosis, but also for moderators that predict outcomes and enable personalized treatment. The latter requires significant work.”
The research team of Huang et al. culled data from the Epic Systems of Palo Alto Medical Foundation (PAMF) and Group Health Research Institute (GHRI) — 35,000 from the former and 5,651 from the latter. The information pulled from the EHRs comprises:
• demographic data;
• ICD-9, RxNorm, and CPT codes;
• progress notes;
• pathology, radiology, and transcription reports.
Researchers used three criteria to identify patients with depression: an ICD-9 code, the presence of a depression disorder term in the clinical text, and the presence of an anti-depressive drug ingredient term in the clinical text. They then compared cohorts of depressed and non-depressed patients in regression models to predict a diagnosis of depression, predict a response to treatment, and assess the severity of depression.
Here is what Huang et al. found:
The model for predicting diagnosis uses ICD-9 codes, disease and drug ingredient terms extracted from clinical notes, and patient demographics as features to achieve an AUC [area under the receiver operating characteristic] of 0.70–0.80 for predicting a diagnosis of depression in patients, up to 12 months before the first diagnosis of depression. Even up to a year before their diagnosis of depression, patients show patterns in their medical history that our model can detect …  In addition, our model for identifying patients with severe baseline depression achieved an AUC of 0.718 when compared against patients with minimal and mild depression.
Based on their research, the authors argue that the adequate treatment of depression relies on three factors: accurately identifying patients both with and without depression, considering the severity of the depression, and using sufficiently large samples of patient data. “These results suggest the use of EHR data can improve the timely diagnosis of depression, a disorder that primary care physicians often miss,” they conclude.
With the economic cost of depression in the United States reaching $44 billion annually as a result of direct expenses and loss of productivity, the findings of Huang et al. could prove encouraging in leveraging EHR data to treat costly chronic diseases both of the body and mind.