Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
2
3
4
5
6
7
8
9
10
8:30 AM - HIMSS Europe
11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
1
2
3
4
5
6
e-Health 2025 Conference and Tradeshow
2025-06-01 - 2025-06-03    
10:00 am - 5:00 pm
The 2025 e-Health Conference provides an exciting opportunity to hear from your peers and engage with MEDITECH.
HIMSS Europe
2025-06-10 - 2025-06-12    
8:30 am - 5:00 pm
Transforming Healthcare in Paris From June 10-12, 2025, the HIMSS European Health Conference & Exhibition will convene in Paris to bring together Europe’s foremost health [...]
38th World Congress on  Pharmacology
2025-06-23 - 2025-06-24    
11:00 am - 4:00 pm
About the Conference Conference Series cordially invites participants from around the world to attend the 38th World Congress on Pharmacology, scheduled for June 23-24, 2025 [...]
2025 Clinical Informatics Symposium
2025-06-24 - 2025-06-25    
11:00 am - 4:00 pm
Virtual Event June 24th - 25th Explore the agenda for MEDITECH's 2025 Clinical Informatics Symposium. Embrace the future of healthcare at MEDITECH’s 2025 Clinical Informatics [...]
International Healthcare Medical Device Exhibition
2025-06-25 - 2025-06-27    
8:30 am - 5:00 pm
Japan Health will gather over 400 innovative healthcare companies from Japan and overseas, offering a unique opportunity to experience cutting-edge solutions and connect directly with [...]
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
Events on 2025-06-01
Events on 2025-06-10
HIMSS Europe
10 Jun 25
France
Events on 2025-06-23
38th World Congress on  Pharmacology
23 Jun 25
Paris, France
Events on 2025-06-24
Events on 2025-06-25
International Healthcare Medical Device Exhibition
25 Jun 25
Suminoe-Ku, Osaka 559-0034
Events on 2025-06-30
Articles

Jul 09 : EHRs enable researchers to predict patient depression

predict patient depression
Researchers from Stanford University have demonstrated the usefulness of EHR data in predicting the diagnosis of depression up to a year in advance, according to research published in the Journal of the American Medical Informatics Association (JAMIA).
“Our results suggest the use of EHR data can improve the timely diagnosis of depression, which is associated with better prognoses when combined with prompt initiation of treatment,” the authors maintain. “Ideally, we are searching not only for models that can diagnose depression early to improve prognosis, but also for moderators that predict outcomes and enable personalized treatment. The latter requires significant work.”
The research team of Huang et al. culled data from the Epic Systems of Palo Alto Medical Foundation (PAMF) and Group Health Research Institute (GHRI) — 35,000 from the former and 5,651 from the latter. The information pulled from the EHRs comprises:
• demographic data;
• ICD-9, RxNorm, and CPT codes;
• progress notes;
• pathology, radiology, and transcription reports.
Researchers used three criteria to identify patients with depression: an ICD-9 code, the presence of a depression disorder term in the clinical text, and the presence of an anti-depressive drug ingredient term in the clinical text. They then compared cohorts of depressed and non-depressed patients in regression models to predict a diagnosis of depression, predict a response to treatment, and assess the severity of depression.
Here is what Huang et al. found:
The model for predicting diagnosis uses ICD-9 codes, disease and drug ingredient terms extracted from clinical notes, and patient demographics as features to achieve an AUC [area under the receiver operating characteristic] of 0.70–0.80 for predicting a diagnosis of depression in patients, up to 12 months before the first diagnosis of depression. Even up to a year before their diagnosis of depression, patients show patterns in their medical history that our model can detect …  In addition, our model for identifying patients with severe baseline depression achieved an AUC of 0.718 when compared against patients with minimal and mild depression.
Based on their research, the authors argue that the adequate treatment of depression relies on three factors: accurately identifying patients both with and without depression, considering the severity of the depression, and using sufficiently large samples of patient data. “These results suggest the use of EHR data can improve the timely diagnosis of depression, a disorder that primary care physicians often miss,” they conclude.
With the economic cost of depression in the United States reaching $44 billion annually as a result of direct expenses and loss of productivity, the findings of Huang et al. could prove encouraging in leveraging EHR data to treat costly chronic diseases both of the body and mind.