Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
28
29
30
1
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
American Academy of Pediatrics Virtual National Conference & Exhibition
2020-10-02 - 2020-10-05    
12:00 am
Organized by the American Academy of Pediatrics Experience education wherever you are, whenever you’d like with over 150 on-demand sessions and more than 35 live [...]
16th World Congress on Public Health 2020
2020-10-12 - 2020-10-16    
12:00 am
Organized by Multiple Partners or Sponsors The global public health community will be meeting at a critical time for our planet. Global temperatures lie far [...]
BARDA Industry Day
2020-10-27    
12:00 am
Organized by BARDA BARDA Industry Day is the annual meeting held to increase potential partner’s awareness of U.S. Government medical countermeasure priorities, interact with BARDA [...]
Events on 2020-10-12
Events on 2020-10-27
BARDA Industry Day
27 Oct 20
Articles

Jul 14 : Epidemic surveillance using an EMR

hipaa compliance
Read More

Abstract

BACKGROUNDS:

Electronic medical records (EMR) form a rich repository of information that could benefit public health. We asked how structured and free-text narrative EMR data should be combined to improve epidemic surveillance for acute respiratory infections (ARI).

METHODS:

Eight previously characterized ARI case detection algorithms (CDA) were applied to historical EMR entries to create authentic time series of daily ARI case counts (background). An epidemic model simulated influenza cases (injection). From the time of the injection, cluster-detection statistics were applied daily on paired background+injection (combined) and background-only time series. This cycle was then repeated with the injection shifted to each week of the evaluation year. We computed: a) the time from injection to the first statistical alarm uniquely found in the combined dataset (Detection Delay); b) how often alarms originated in the background-only dataset (false-alarm rate, or FAR); and c) the number of cases found within these false alarms (Caseload). For each CDA, we plotted the Detection Delay as a function of FAR or Caseload, over a broad range of alarm thresholds.

RESULTS:

CDAs that combined text analyses seeking ARI symptoms in clinical notes with provider-assigned diagnostic codes in order to maximize the precision rather than the sensitivity of case-detection lowered Detection Delay at any given FAR or Caseload.

CONCLUSION:

An empiric approach can guide the integration of EMR data into case-detection methods that improve both the timeliness and efficiency of epidemic detection.

Source