Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
22
23
25
26
27
28
29
30
31
1
2
3
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
AI in Healthcare Forum
2025-07-10 - 2025-07-11    
10:00 am - 5:00 pm
Jeff Thomas, Senior Vice President and Chief Technology Officer, shares how the migration not only saved the organization millions of dollars but also led to [...]
28th World Congress on  Nursing, Pharmacology and Healthcare
2025-07-21 - 2025-07-22    
10:00 am - 5:00 pm
To Collaborate Scientific Professionals around the World Conference Date:  July 21-22, 2025
5th World Congress on  Cardiovascular Medicine Pharmacology
2025-07-24 - 2025-07-25    
10:00 am - 5:00 pm
About Conference The 5th World Congress on Cardiovascular Medicine Pharmacology, scheduled for July 24-25, 2025 in Paris, France, invites experts, researchers, and clinicians to explore [...]
Events on 2025-06-30
Events on 2025-07-10
AI in Healthcare Forum
10 Jul 25
New York
Events on 2025-07-21
Events on 2025-07-24
Articles

Jul 14 : Epidemic surveillance using an EMR

hipaa compliance
Read More

Abstract

BACKGROUNDS:

Electronic medical records (EMR) form a rich repository of information that could benefit public health. We asked how structured and free-text narrative EMR data should be combined to improve epidemic surveillance for acute respiratory infections (ARI).

METHODS:

Eight previously characterized ARI case detection algorithms (CDA) were applied to historical EMR entries to create authentic time series of daily ARI case counts (background). An epidemic model simulated influenza cases (injection). From the time of the injection, cluster-detection statistics were applied daily on paired background+injection (combined) and background-only time series. This cycle was then repeated with the injection shifted to each week of the evaluation year. We computed: a) the time from injection to the first statistical alarm uniquely found in the combined dataset (Detection Delay); b) how often alarms originated in the background-only dataset (false-alarm rate, or FAR); and c) the number of cases found within these false alarms (Caseload). For each CDA, we plotted the Detection Delay as a function of FAR or Caseload, over a broad range of alarm thresholds.

RESULTS:

CDAs that combined text analyses seeking ARI symptoms in clinical notes with provider-assigned diagnostic codes in order to maximize the precision rather than the sensitivity of case-detection lowered Detection Delay at any given FAR or Caseload.

CONCLUSION:

An empiric approach can guide the integration of EMR data into case-detection methods that improve both the timeliness and efficiency of epidemic detection.

Source