Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
1
2
3
4
5
6
7
8
12:00 AM - DEVICE TALKS
9
11
12
13
14
16
18
19
20
21
22
23
24
26
27
28
29
30
31
1
2
3
4
DEVICE TALKS
DEVICE TALKS BOSTON 2018: BIGGER AND BETTER THAN EVER! Join us Oct. 8-10 for the 7th annual DeviceTalks Boston, back in the city where it [...]
6th Annual HealthIMPACT Midwest
2018-10-10    
All Day
REV1 VENTURES COLUMBUS, OH The Provider-Patient Experience Summit - Disrupting Delivery without Disrupting Care HealthIMPACT Midwest is focused on technologies impacting clinician satisfaction and performance. [...]
15 Oct
2018-10-15 - 2018-10-16    
All Day
Conference Series Ltd invites all the participants from all over the world to attend “3rd International Conference on Environmental Health” during October 15-16, 2018 in Warsaw, Poland which includes prompt keynote [...]
17 Oct
2018-10-17 - 2018-10-19    
7:00 am - 6:00 pm
BALANCING TECHNOLOGY AND THE HUMAN ELEMENT In an era when digital technologies enable individuals to track health statistics such as daily activity and vital signs, [...]
Epigenetics Congress 2018
2018-10-25 - 2018-10-26    
All Day
Conference: 5th World Congress on Epigenetics and Chromosome Date: October 25-26, 2018 Place: Istanbul, Turkey Email: epigeneticscongress@gmail.com About Conference: Epigenetics congress 2018 invites all the [...]
Events on 2018-10-08
DEVICE TALKS
8 Oct 18
425 Summer Street
Events on 2018-10-10
Events on 2018-10-17
17 Oct
Events on 2018-10-25
Epigenetics Congress 2018
25 Oct 18
Istanbul
Articles

Large models identify social determinants in records

Social determinants of health (SDoH) significantly influence patient outcomes, yet their documentation is frequently incomplete or absent in the structured data of electronic health records (EHRs). The utilization of large language models (LLMs) holds promise in efficiently extracting SDoH from EHRs, contributing to both research and clinical care. However, challenges such as class imbalance and data limitations arise when handling this sparsely documented yet vital information.

In our investigation, we explored effective approaches to leverage LLMs for extracting six distinct SDoH categories from narrative EHR text. The standout performers included the fine-tuned Flan-T5 XL, achieving a macro-F1 of 0.71 for any SDoH mentions, and Flan-T5 XXL, attaining a macro-F1 of 0.70 for adverse SDoH mentions. The incorporation of LLM-generated synthetic data during training had varying effects across models and architectures but notably improved the performance of smaller Flan-T5 models (delta F1 + 0.12 to +0.23).

Our best-fine-tuned models outperformed zero- and few-shot performance of ChatGPT-family models in their respective settings, except for GPT4 with 10-shot prompting for adverse SDoH. These fine-tuned models exhibited a reduced likelihood of changing predictions when race/ethnicity and gender descriptors were introduced to the text, indicating diminished algorithmic bias (p < 0.05). Notably, our models identified 93.8% of patients with adverse SDoH, a significant improvement compared to the mere 2.0% captured by ICD-10 codes. These results highlight the potential of LLMs in enhancing real-world evidence related to SDoH and in identifying patients who could benefit from additional resource support.