Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
20
21
22
24
25
26
27
28
29
30
1
2
3
4
5
6
BARDA Industry Day
2020-10-27    
12:00 am
Organized by BARDA BARDA Industry Day is the annual meeting held to increase potential partner’s awareness of U.S. Government medical countermeasure priorities, interact with BARDA [...]
The Future of Insurance USA
2020-11-16 - 2020-11-18    
All Day
We’re excited to announce today the launch of The Future of Insurance USA (November 16-18 2020), an online 3-day conference by Reuters Events. The Future [...]
Geneva Health Forum 2020
2020-11-16 - 2020-11-18    
12:00 am
Geneva Health Forum 2020 The 8th edition of the Geneva Health Forum will take place from 16-18 November 2020. The thematic of the year will [...]
19 Nov
2020-11-19 - 2020-11-20    
12:00 am
The stage is set for a paradigm shift in healthcare. The opportunity exists to redefine healthcare in a way that transforms patient outcomes, drives efficiency [...]
The 2nd Saudi International Pharma Expo
2020-11-23 - 2020-11-24    
All Day
ABOUT THE 2ND SAUDI INTERNATIONAL PHARMA EXPO SAUDI INTERNATIONAL PHARMA EXPO offers you an EXCELLENT opportunity to expand your business in Saudi Arabia and international [...]
World Congress on Medical Toxicology
2020-12-01 - 2020-12-02    
12:00 am
World Congress on Medical Toxicology Medical Toxicology Pharma 2020 provides a global platform to meet and develop interpersonal relationship with the world’s leading toxicologists, pharmacologists, [...]
01 Dec
2020-12-01 - 2020-12-02    
All Day
International Conference on Food Technology & Beverages” at Kyoto, Japan in the course of Kyoto, Japan, December, 01-02, 2020 Theme of the Food Tech 2020 [...]
Biomedical, Bio Pharma and Clinical Research
2020-12-03 - 2020-12-04    
12:00 am
Biomedical, Bio Pharma and Clinical Research Conference Series LLC LTD cordially invites you to be a part of “2nd International Conference on Biomedical, Bio Pharma [...]
Events on 2020-10-27
BARDA Industry Day
27 Oct 20
Events on 2020-11-16
Events on 2020-11-19
Events on 2020-11-23
The 2nd Saudi International Pharma Expo
23 Nov 20
King Abdullah
Events on 2020-12-03
Articles Latest News

National Standard Unveiled for Scalable, Safe Healthcare AI

EMR Industry

Researchers at Duke University School of Medicine have developed two innovative frameworks to assess the performance, safety, and reliability of large language models in healthcare.

Published in npj Digital Medicine and the Journal of the American Medical Informatics Association (JAMIA), two new studies present a novel approach to ensuring that AI systems used in clinical environments adhere to the highest standards of quality, safety, and accountability.

As large language models become more integrated into healthcare—supporting tasks such as clinical note generation, conversation summarization, and patient communication—health systems face increasing challenges in evaluating these technologies in a rigorous yet scalable way. The Duke University-led research, headed by Chuan Hong, Ph.D., assistant professor in Biostatistics and Bioinformatics, aims to address this critical need.

The study published in npj Digital Medicine introduces SCRIBE, a structured evaluation framework for Ambient Digital Scribing tools. These AI-driven systems are designed to generate clinical documentation by capturing real-time conversations between patients and providers. SCRIBE combines expert clinical review, automated performance scoring, and simulated edge-case testing to assess tools across key metrics such as accuracy, fairness, coherence, and resilience.

“Ambient AI has significant potential to ease documentation burdens for clinicians,” Hong noted. “But careful evaluation is crucial. Without it, there’s a risk of deploying systems that introduce bias, omit vital details, or compromise care quality. SCRIBE is built to safeguard against those risks.”

A second, related study published in JAMIA introduces a complementary framework for evaluating large language models integrated into the Epic electronic medical record system, specifically those used to generate draft responses to patient messages. The study assesses these AI-generated replies by comparing clinician feedback with automated evaluation metrics, focusing on attributes such as clarity, completeness, and safety.

While the models demonstrated strong performance in tone and readability, the study identified notable gaps in response completeness—highlighting the critical need for ongoing evaluation in real-world settings.

“This research helps bridge the gap between cutting-edge algorithms and meaningful clinical application,” said Michael Pencina, Ph.D., Chief Data Scientist at Duke Health and co-author of both studies. “It underscores that responsible AI implementation requires rigorous, ongoing evaluation as part of the technology’s entire life cycle—not just as a final step.”

Together, these two frameworks provide a robust foundation for the responsible integration of AI in healthcare. They equip clinical leaders, developers, and regulators with the tools necessary to evaluate AI models prior to deployment and to continuously monitor their performance—ensuring that these technologies enhance care delivery without compromising patient safety or trust.