Events Calendar

Mon
Tue
Wed
Thu
Fri
Sat
Sun
M
T
W
T
F
S
S
26
27
28
29
30
31
2
3
4
5
6
7
8
9
10
8:30 AM - HIMSS Europe
11
12
13
14
15
16
17
18
19
20
21
22
26
27
28
29
1
2
3
4
5
6
e-Health 2025 Conference and Tradeshow
2025-06-01 - 2025-06-03    
10:00 am - 5:00 pm
The 2025 e-Health Conference provides an exciting opportunity to hear from your peers and engage with MEDITECH.
HIMSS Europe
2025-06-10 - 2025-06-12    
8:30 am - 5:00 pm
Transforming Healthcare in Paris From June 10-12, 2025, the HIMSS European Health Conference & Exhibition will convene in Paris to bring together Europe’s foremost health [...]
38th World Congress on  Pharmacology
2025-06-23 - 2025-06-24    
11:00 am - 4:00 pm
About the Conference Conference Series cordially invites participants from around the world to attend the 38th World Congress on Pharmacology, scheduled for June 23-24, 2025 [...]
2025 Clinical Informatics Symposium
2025-06-24 - 2025-06-25    
11:00 am - 4:00 pm
Virtual Event June 24th - 25th Explore the agenda for MEDITECH's 2025 Clinical Informatics Symposium. Embrace the future of healthcare at MEDITECH’s 2025 Clinical Informatics [...]
International Healthcare Medical Device Exhibition
2025-06-25 - 2025-06-27    
8:30 am - 5:00 pm
Japan Health will gather over 400 innovative healthcare companies from Japan and overseas, offering a unique opportunity to experience cutting-edge solutions and connect directly with [...]
Electronic Medical Records Boot Camp
2025-06-30 - 2025-07-01    
10:30 am - 5:30 pm
The Electronic Medical Records Boot Camp is a two-day intensive boot camp of seminars and hands-on analytical sessions to provide an overview of electronic health [...]
Events on 2025-06-01
Events on 2025-06-10
HIMSS Europe
10 Jun 25
France
Events on 2025-06-23
38th World Congress on  Pharmacology
23 Jun 25
Paris, France
Events on 2025-06-24
Events on 2025-06-25
International Healthcare Medical Device Exhibition
25 Jun 25
Suminoe-Ku, Osaka 559-0034
Events on 2025-06-30
Latest News

NLP model accelerates patient message handling in EHR systems

nlp_model-EMR industry

1. Anderson and colleagues compared clinical staff response times to patient messages with NLP labeling versus without NLP.
2. NLP shortened the time required to respond to new patient messages and to complete patient conversations.

Evidence Rating: Level 2 (Good)

Study Summary:
Patients are increasingly using EHR messaging portals for care, but messages often get routed manually through a central pool before reaching the right staff, causing delays. To address this, Anderson and colleagues developed an NLP model to categorize incoming messages into common themes, aiming to speed up response times. The model was trained on 40,000 EHR messages and sorted messages into five categories: urgent, clinician, refill, schedule, or form. After deployment in a clinical setting, the response times of NLP-routed messages were compared to a similar group of manually routed messages. Key measures included time to first staff interaction, time to complete the conversation, and total messages exchanged. Results showed that NLP-routed messages reached healthcare staff faster and conversations were completed more quickly. The NLP system also consistently categorized messages accurately. This study demonstrates that integrating an NLP classifier within EHRs can improve response times and reduce the messaging workload for healthcare staff.

In-Depth \[Prospective Cohort]:
The NLP model was developed using a dataset of 40,000 EHR messages from adult patients, with each message annotated by a clinician into one of five categories: urgent, clinician, refill, schedule, or form. After development, the model was implemented across four outpatient sites. The intervention group had messages automatically routed by the NLP, while the control group consisted of a parallel set of unrouted messages. Both groups’ messages were collected from the same sites during the same two-week period, following identical inclusion and exclusion criteria.

Primary outcomes compared were the time from message initiation to first healthcare staff interaction (including reads, forwards, or replies), time from initiation to conversation completion, and the total number of message interactions by staff. Secondary outcomes assessed the NLP’s precision, recall, and accuracy in labeling messages.

Results showed that the intervention group experienced a median 1-hour faster initial response time (95% CI: −1.42 to −0.5 hours) and a 22.5-hour shorter median time to complete conversations (95% CI: −36.3 to −17.7 hours). Staff in the NLP-routed group also handled fewer total message interactions, with a median reduction of 2 interactions (95% CI: −2.9 to −1.4). The NLP demonstrated precision, recall, and accuracy rates exceeding 95% across all five categories.

Overall, this study confirmed that using an NLP classifier within the EHR can improve operational efficiency and reduce administrative workload for healthcare teams.